Biomedical Engineering Reference
In-Depth Information
60. Popov, Y. O. and Witten, T. A., Characteristic angles in the wetting of an angular region: Deposit
growth. Physical Review E, 68(3) (2003).
61. Popov, Y. O., Evaporative deposition patterns: Spatial dimensions of the deposit. Physical Review
E, 71(3) (2005).
62. Bigioni, T. P., Lin, X. M., Nguyen, T. T., Corwin, E. I., Witten, T. A. and Jaeger, H. M., Kinetically
driven self assembly of highly ordered nanoparticle monolayers. Nature Materials, 5(4) (2006)
265-270.
63. Hu, H. and Larson, R. G., Marangoni effect reverses coffee-ring depositions. Journal of Physical
Chemistry B, 110(14) (2006) 7090-7094.
64. Park, J. and Moon, J., Control of colloidal particle deposit patterns within picoliter droplets ejected
by ink-jet printing. Langmuir, 22(8) (2006) 3506-3513.
65. Bormashenko, E., Bormashenko, Y., Pogreb, R., Stanevsky, O. and Whyman, G., Droplet behav-
ior on flat and textured surfaces: Co-occurrence of Deegan outward flow with Marangoni solute
instability. Journal of Colloid and Interface Science, 306(1) (2007) 128-132.
66. Kinge, S., Crego-Calama, M. and Reinhoudt, D. N., Self-assembling nanoparticles at surfaces and
interfaces. Chemphyschem, 9(1) (2008) 20-42.
67. Bonn, D., Eggers, J., Indekeu, J., Meunier, J. and Rolley, E., Wetting and spreading. Reviews of
Modern Physics, 81(2) (2009) 739-805.
68. Craster, R. V. and Matar, O. K., Dynamics and stability of thin liquid films. Reviews of Modern
Physics, 81(3) (2009) 1131-1198.
69. Bhardwaj, R., Fang, X. H., Somasundaran, P. and Attinger, D., Self-assembly of colloidal parti-
cles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram.
Langmuir, 26(11) (2010) 7833-7842.
70. Flory, P. J., Principles of Polymer Chemistry. Cornell University Press, London, 1953.
71. Ilyina, E. and Sillescu, H., Toluene self-diffusion in solutions of linear and cross-linked
polystyrene. Polymer, 36(1) (1995) 137-141.
72. Masaro, L. and Zhu, X. X., Physical models of diffusion for polymer solutions, gels and solids.
Progress in Polymer Science, 24(5) (1999) 731-775.
73. McDonald, P. J., Godward, J., Sackin, R. and Sear, R. P., Surface flux limited diffusion of solvent
into polymer. Macromolecules, 34(4) (2001) 1048-1057.
74. Ueberreiter, K., The Solution Process. Academic Press, New York, 1968, pp. 219-257.
75. Narasimhan, B. and Peppas, N. A., The physics of polymer dissolution: Modeling approaches and
experimental behavior, in: Polymer Analysis—Polymer Physics, Vol. 128, 1997, pp. 157-207.
76. Narasimhan, B., Mathematical models describing polymer dissolution: consequences for drug
delivery. Advanced Drug Delivery Reviews, 48(2-3) (2001) 195-210.
77. Ionescu, R. E., Marks, R. S. and Gheber, L. A., Nanolithography using protease etching of protein
surfaces. Nano Letters, 3(12) (2003) 1639-1642.
78. Ionescu, R. E., Marks, R. S. and Gheber, L. A., Manufacturing of nanochannels with controlled
dimensions using protease nanolithography. Nano Letters, 5(5) (2005) 821-827.
79. Carré, A., Gastel, J.-C. and Shanahan, M. E. R., Viscoelastic effects in the spreading of liquids.
Nature, 379 (1996) 432-434.
80. Saiz, E., Tomsia, A. P. and Cannon, R. M., Ridging effects on wetting and spreading of liquids on
solids. Acta Materialia, 46(7) (1998) 2349-2361.
81. Pu, G., Guo, J., Gwin, L. E. and Severtson, S. J., Mechanical pinning of liquids through inelastic
wetting ridge formation on thermally stripped acrylic polymers. Langmuir, 23(24) (2007) 12142-
12146.
Search WWH ::




Custom Search