Cryptography Reference
In-Depth Information
chapter 10
Noise-Immune Quantum
Key Distribution
Z.D. Walton, A.V. Sergienko, B.E.A. Saleh,
and M.C. Teich
Boston University
Contents
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.2 Noise-Immune Polarization-Coded Schemes . . . . . . . . . . . . . . . . . . . . . . . 212
10.2.1 Round-Trip Noise-Immune Polarization-Coded QKD . . . . . 212
10.2.2 One-Way Noise-Immune Polarization-Coded QKD . . . . . . . 214
10.2.3 Symmetric Noise-Immune Polarization-Coded QKD . . . . . 215
10.3 Noise-Immune Time-Bin-Coded Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.1 Round-Trip Noise-Immune Time-Bin-Coded QKD . . . . . . . . 216
10.3.2 One-Way Noise-Immune Time-Bin-Coded QKD . . . . . . . . . . 217
10.3.3 Symmetric Noise-Immune Time-Bin-Coded QKD . . . . . . . . . 221
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Abstract
We review quantum key distribution schemes that are noise-immune (require
no alignment). For both polarization and time-bin qubits, we present three
noise-immune schemes: round-trip, one-way, and symmetric. In the round-
trip schemes, the signal travels back and forth between the legitimate users
(Alice and Bob); in the one-way schemes, the signal travels only from Alice
to Bob; in the symmetric schemes, a central source sends signals to Alice and
Bob. The primary benefit of the symmetric configuration is that both Alice
and Bob may have passive setups (neither Alice nor Bob is required to make
active changes for each run of the protocol). We show that all the schemes can
be implemented with existing technology.
Search WWH ::




Custom Search