Civil Engineering Reference
In-Depth Information
Let us allot the following values to the remaining constants that are necessary for a numerical
calculation of
(
)
xL
2
σ
=
:
r
r
y
ρ
(kg/m 3 )
B
(m)
D (m)
m
(kg/m)
C
ω
ζ
y
y
D
(rad/s)
1.25
0.7
20
4
10000
0.4
0.005
m is constant along the span, then the modally equivalent and evenly distributed mass
Since
mm
=
. Finally, let us adopt quasi-static values to the aerodynamic derivatives, in which case
y
y
0
κ
=
and the aerodynamic damping
ζ
is given by (see Eqs. 5.26 and 6.24)
ae y
ae y
2
2
ρ
B
ρ
B
D
V
ρ
DC V
*
4
P
2
C
D
4.375 10
V
ζ
=
=
= −
≈ −
ae
1
D
y
4
m
4
m
B B
ω
2
m
ω
y
y
y
y
y
The non-dimensional joint acceptance function ˆ J may readily be obtained by numerical
calculations. However, as shown by Davenport [14], in many cases closed form solutions may be
obtained. The situation that
ˆ
()
(
)
(
)
φ
y x
=
sin
π
xL
and
Co
ω Δ
,
x
is a simple exponential
uu
function is such a case. Substituting
x
=
x
,
x
=+Δ
xx
,
x
=
π
xL
,
Δ=Δ
x
xL
and
2
ωω
ˆ
=
ux CLV
, then
2
ˆ
ˆ
() ()
(
)
2
2
J
∫∫
φ
x
φ
x
Co
x
,
ω
dx dx
φ
dx
=
Δ
y
y
1
y
2
uu
1
2
y
L
L
exp
2
LL x
−Δ
exp
exp
L
ˆ
(
)
( )
(
)
2
∫ ∫
=
2
φ
xx
+ Δ
φ
x x o xdx
Δ
,
ω
Δ
φ
x
y
y
uu
y
0
0
0
2
LL x
−Δ
exp
exp
L
π
π
π
(
)
(
)
2
∫ ∫
=
2
sin
x
+ Δ
x
sin
xdx
exp
C
ω
Δ
x V d x
Δ
sin
xdx
ux
L
L
L
0
0
0
(
)
Using that sin 2
α
=
2sin
α
cos
α
and that
sin
α
+=
β
sin
α
cos
β
+
cos
α
sin
β
, then this
may be expanded into
LL x
−Δ
exp
exp
8
1
2
Cx
π
π
π
π
ω
Δ
ˆ
2
2
ux
J
∫ ∫
cos
x
sin
x
sin
x
sin
x
dx
exp
d x
=
Δ
+
Δ
Δ
y
2
L
L
2
L
L
V
L
0
0
(
)
(
)
1
x
ˆ
1
x
ˆ
π
−Δ
π
−Δ
1
8
π
1
π
2
(
)
cos
x
ˆ
sin
xdx
ˆ
ˆ
sin
x
ˆ
sin 2
xdx
ˆ
ˆ
exp
ˆ
x d x
ˆ
ˆ
=
Δ
+
Δ
ω
Δ
Δ
π
L
2
L
0
0
0
1
8
1
π
ˆ
2
(
)
(
)
(
)
J
=
1
− Δ
x
ˆ
cos
π
Δ
x
ˆ
cos
π
Δ
x
ˆ
sin 2
π
1
− Δ
x
ˆ
sin
π
Δ
x
ˆ
cos 2
π
1
− Δ
x
ˆ
y
2
4
π
0
1
(
)
ˆ
ˆ
ˆ
ˆ
+
sin
π
Δ
x
exp
ω
Δ
x d x
Δ
4
 
Search WWH ::




Custom Search