Agriculture Reference
In-Depth Information
Conclusions
critical zone, which is the thin veneer
of our planet where rock meets life.
Understanding the operation of these
soil-forming factors requires an interdis-
ciplinary approach and is a necessary
predicate to charactering soil processes
and functions, mitigating soil degrad-
ation and adapting soil management to
environmental change.
Soil formation reflects the complex
interaction of many factors, among the
most important of which are: (i) the na-
ture of soil parent material; (ii) regional
climate; (iii) organisms, including hu-
mans; (iv) topography; and (v) time.
These processes take place in Earth's
References
Amundson, R. (2005) Soil formation. In: Drever, J.I. (ed.) Surface and Groundwater, Weathering and Soils .
Series editors Holland H.D. and Turekian K.K. Treatise on Geochemistry, Vol 5. Elsevier-Pergamon,
Oxford, UK, pp. 1-35.
Amundson, R., Guo, Y. and Gong, P. (2003) Soil diversity and land use in the United States. Ecosystems 6,
470-482.
Amundson, R., Richter, D. and Humphreys, G. (2007) Coupling between biota and earth materials in the
critical zone. Elements 3, 327-332.
Anderson, S.P., von Blanckenburg, F. and White, A.F. (2007) Physical and chemical controls on the critical
zone. Elements 3, 315-319.
Batjes, N.H. (1996) Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47,
151-163.
Banwart, S.A., Bernasconi, S., Bloem, J., Blum, W., Brandao, M., Brantley, S., Chabaux, F., Duffy, C., Kram, P.,
Lair, G. et al . (2011) Assessing soil processes and function across an international network of crit-
ical zone observatories: research hypotheses and experimental design. Vadose Zone Journal 10,
974-987.
Banwart, S.A., Chorover, J., Gaillardet, J., Sparks, D., White, T., Anderson, S., Aufdenkampe, A., Bernasconi, S.,
Brantley, S., Chadwick, O. et al . (2013) Sustaining Earth's Critical Zone; Basic Science and Interdis-
ciplinary Solutions for Global Challenges . The University of Sheffield, UK, 45pp.
Beerling, D.J. and Berner, R.A. (2005) Feedbacks and the coevolution of plants and atmospheric CO 2 . Pro-
ceedings of the National Academy of Sciences USA 102(5), 1302-1305.
Bernasconi, S.M., Bauder, A., Bourdon, B., Brunner, I., Bunemann, E., Christl, I., Derungs, N., Edwards, P.,
Farinotti, D., Frey, B. et al . (2011) Chemical and biological gradients along the Damma Glacier soil
chronosequence (Switzerland). Vadose Zone Journal 10, 867-883.
Berner, R.A. (1997) Geochemistry and geophysics: the rise of plants and their effect on weathering and
atmospheric CO 2 . Science 276(5312), 544-546.
Birkland, P.W. (1999) Soils and Geomorphology . Oxford University Press, New York, 430 pp.
Brantley, S.L. (2005) Reaction kinetics of primary rock-forming minerals under ambient conditions. In:
Drever, J.I. (ed.) Treatise on Geochemistry . Series editors H.D. Holland and K.K. Turekian. Elsevier-
Pergamon, Oxford, UK, pp. 73-118.
Brantley, S.L. (2008) Understanding soil time. Science 321(9), 1454-1455.
Brantley, S.L., Goldhaber, M.B. and Ragnarsdottir, K.V. (2007) Crossing disciplines and scales to under-
stand the critical zone. Elements 3, 307-314.
Brantley, S.L., Megonigal, J., Scatena F., Balogh-brunstad, Z., Barnes, R., Bruns, M., Van Cappellen, P.,
Dontsova, K., Hartnett, H., Hartshorn, A. et al . (2011) Twelve testable hypotheses on the geobiology
of weathering. Geobiology 9(2), 140-165.
Brimhall, G.H. and Dietrich, W.E. (1987) Constitutive mass balance relations between chemical compos-
ition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weather-
ing and pedogenesis. Geochmica et Cosmochimica Acta 51(4), 567-587.
Brimhall, G.H., Lewis, C.J., Ford, C., Bratt, J., Taylor, G. and Warin, O. (1991) Quantitative geochemical
approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian
influx in lateritization. Geoderma 51, 51-91.
 
Search WWH ::




Custom Search