Global Positioning System Reference
In-Depth Information
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
q
km, GPS
.
N pq
km, GPS
.
ξ
= S S + S GLO 2 D S S + S GLO
(7.121)
s
km, GLO
.
N rs
km, 1 , GLO
.
ξ
Ap plying the covariance propagation (4.34), the covariance matrix of double-dif-
fe rence ambiguity is
D T . Having
Σ N it is possible to determine the integer
do uble-difference ambiguities using a technique such as LAMBDA. The subsequent
co nstraint solution, in which the integer ambiguities are treated as known quantities,
yi elds the final estimates for the station coordinates, the S GPS parameters ξ
Σ N =
DC
ξ
q
km, 1 , GPS | N
s
km, 1 , GLO | N , as well as the final time estimates d
an d S GLO parameters ξ
ˆ
t km | N .
The variance-covariance propagation step can be avoided by using a parameteri-
za tion in terms of
[27
p
km, 1 , GPS for the base GPS satellite and the GPS double differences
ξ
pq
km, 1 , GPS
N pq
ξ
km, 1 , GPS . The respective parameters for the GLONASS satellites are
Lin
* 2 ——
No
PgE
km, 1 , GLO
r km, 1 , GLO =
N rs
ξ
km, 1 , GLO . A submatrix of the design matrix that reflects
th is parameterization is shown in Table 7.5. Ambiguity fixing can then be directly ap-
pl ied to the variance-covariance submatrix of the estimates ξ
and
ξ
rs
km, 1 , GLO .
Having the parameter estimation completed, using single-difference observations
an d fixing GPS-GPS and GLO-GLO double-difference ambiguities, we can inspect
th e double difference (GPS and GLO base satellites)
pq
km, 1 , GPS and ξ
pr
km, 1 = ξ
p
km, 1 , GPS |
r
km, 1 , GLO |
∆ξ
− ξ
N pr
=
km, 1 +
d km, 1 , GLO
d km, 1 , GPS
[27
N
N
(7.122)
N pr
km, 1
=
+
DDRB
TABLE 7.5
Submatrix for Alternate Parameterization of ξ
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note: The table shows the case for S GPS = 5 and S GLO = 4.
 
Search WWH ::




Custom Search