Biomedical Engineering Reference
In-Depth Information
microfluidic platform, Proceeding of Miniaturized Systems for Chemistry and Life
Sciences (μTAS) , pp. 1287-1290, 2003.
3. Guiseppi-Elie, A., S. Brahim, G. Slaughter, and K. R. Ward, Design of a subcuta-
neous implantable biochip for monitoring of glucose and lactate, IEEE Sensors
Journal , vol. 5, no. 3, pp. 345-355, 2005.
4. Verpoorte, E. and N. F. De Rooij, Microfluidics meets MEMS, Proceeding of IEEE ,
vol. 91, pp. 930-953, 2003.
5. Schasfoort, R. B. M., S. Schlautmann, J. Hendrikse, and A. van den Berg,
Field-effect flow control for microfabricated fluidic networks, Science , vol. 286,
pp. 942-945, 1999.
6. Fluidigm Corporation, http://www.fluidigm.com. .
7. Caliper Life Science, http://www.caliperls.com .
8. Tecan Systems Inc, http://www.tecan.com .
9. Fair, R. B., V. Srinivasan, H. Ren, P. Paik, V. K. Pamula, and M. G. Pollack,
Electrowetting-based on-chip sample processing for integrated microfluidics,
Proceeding of IEEE International Electron Devices Meeting (IEDM) , pp. 32.5.1-32.5.4,
2003.
10. Pollack, M. G., R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation
of liquid droplets for microfluidic applications, Applied Physics Letters , vol. 77,
no. 11, 2000.
11. Cho, S. K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merg-
ing liquid droplets by electrowetting-based actuation for digital microfluidic
circuits, Journal of Microelectromechanical Systems , vol. 12, no. 1, pp. 70-80, 2003.
12. Abdelgawad, M. and A. R. Wheeler, Rapid prototyping in copper substrates for
digital microfluidics. Advanced Material , vol. 19, pp. 133-137, 2007.
13. Fair, R. B., A. Khlystov, T. D. Tailor, V. Ivanov, R. D. Evans, P. B. Griffin,
V. Srinivasan, V. K. Pamula, M. G. Pollack, and J. Zhou, Chemical and biologi-
cal applications of digital-microfluidic devices, IEEE Design & Test of Computers ,
vol. 24, pp. 10-24, 2007.
14. Su, F. and K. Chakrabarty, High-level synthesis of digital microfluidic biochips,
ACM Journal on Emerging Technologies in Computing Systems , vol. 3, Article 16,
January 2008. (for general reference; not cited in text.)
15. Su, F. and K. Chakrabarty, Unified high-level synthesis and module place-
ment for defect-tolerant microfluidic biochips, Proceeding of IEEE/ACM Design
Automation Conference , pp. 825-830, 2005.
16. Yuh, P.-H., C.-L. Yang, and C.-W. Chang, Placement of defect-tolerant digital
microfluidic biochips using the T-tree formulation, ACM Journal on Emerging
Technologies in Computing Systems , vol. 3, issue 3, 2007.
17. Ricketts, A. J., K. Irick, N. Vijaykrishnan, and M. J. Irwin, Priority scheduling in
digital microfluidics-based biochips. Proceeding of IEEE Design, Automation and
Test in Europe (DATE) Conference , pp. 329-334, 2006.
18. Pfeiffer, J., T. Mukherjee, and S. Hauan, Synthesis of multiplexed biofluidic
microchips, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems , vol. 2, pp. 321-333, 2006.
19. International Technology Roadmap for Semiconductors, http://public.itrs.net/
Files /2003ITRS/Home2003.htm .
20. Su, F., Synthesis, Testing, and Reconfiguration Techniques for Digital Micro-
fluidic Biochips, Ph.D. thesis, Duke University, Durham, NC, 2006.
Search WWH ::




Custom Search