Biomedical Engineering Reference
In-Depth Information
[128] Kadayakkara DK, Beatty pl, Turner Ms, Janjic JM, ahrens eT, Finn oJ. inflammation
driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links
inflammatory bowel disease and pancreatitis. pancreas 2010; 39 :510-515.
[129] Weise g, Basse-luesebrink TC, Wessig C, Jakob pM, stoll g. In vivo imaging of inflam-
mation in the peripheral nervous system by (19)F Mri. exp neurol 2011; 229 :494-501.
[130] Dewitte h, geers B, liang s, himmelreich U, Demeester J, De smedt sC, lentacker i.
Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-
loading and (19)F-Mri tracking of dendritic cells. J Control release 2013; 169 :141-149.
[131] Caruthers sD, Cyrus T, Winter pM, Wickline sa, lanza gM. anti-angiogenic perfluo-
rocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley interdiscip
rev nanomed nanobiotechnol 2009; 1 :311-323.
[132] lanza gM. Targeted antiproliferative drug delivery to vascular smooth muscle cells
with a magnetic resonance imaging nanoparticle contrast agent: implications for rational
therapy of restenosis. Circulation 2002; 106 :2842-2847.
[133] Maali a, Mosavian MTh. preparation application of nanoemulsions in the last decade
(2000-2010). J Dispers sci Tech 2013; 34 :92-105.
[134] patel sK, patrick MJ, pollock Ja, Janjic JM. Two-color fluorescent (nir and visible)
triphasic perfluorocarbon nanoemuslions. J Biomed opt 2013; 18 :101312.
[135] hoffmann i, heunemann p, Farago B, grillo i, holderer o, päch M, gradzielski M.
structure and dynamics of nanoemulsions: insights from combining dynamic and static
neutron scattering. phys rev e 2012; 86 :061407.
[136] Constantinides pp, Chaubal Mv, shorr r. advances in lipid nanodispersions for paren-
teral drug delivery and targeting. adv Drug Deliv rev 2008; 60 :757-767.
[137] gianella a, Jarzyna pa, Mani v, ramachandran s, Calcagno C, Tang J, Kann B, Dijk
WJ, Thijssen vl, griffioen aW, storm g, Fayad Za, Mulder WJ. Multifunctional
nanoemulsion platform for imaging guided therapy evaluated in experimental cancer.
aCs nano 2011; 5 :4422-4433.
[138] ornelas C, pennell r, liebes lF, Weck M. Construction of a well-defined multifunc-
tional dendrimer for theranostics. org lett 2011; 13 :976-979.
[139] longmire M, Choyke pl, Kobayashi h. Dendrimer-based contrast agents for molecular
imaging. Curr Top Med Chem 2008; 8 :1180-1186.
[140] Kaminskas lM, Mcleod vM, porter CJ, Boyd BJ. association of chemotherapeutic
drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation
compared to noncovalent encapsulation. Mol pharm 2012; 9 :355-373.
[141] lazniewska J, Milowska K, gabryelak T. Dendrimers—revolutionary drugs for
infectious diseases. Wiley interdiscip rev nanomed nanobiotechnol 2012; 4 :469-491.
[142] Koyama Y, Talanov vs, Bernardo M, hama Y, regino Ca, Brechbiel MW, Choyke pl,
Kobayashi h. a dendrimer-based nanosized contrast agent dual-labeled for magnetic
resonance and optical fluorescence imaging to localize the sentinel lymph node in mice.
J Magn reson imaging 2007; 25 :866-871.
[143] Dhanikula rs, hildgen p. influence of molecular architecture of polyether-co-polyester
dendrimers on the encapsulation and release of methotrexate. Biomaterials
2007; 28 :3140-3152.
[144] Davis sC, pogue BW, springett r, leussler C, Mazurkewitz p, Tuttle sB, gibbs-strauss
sl, Jiang ss, Dehghani h, paulsen KD. Magnetic resonance-coupled fluorescence
tomography scanner for molecular imaging of tissue. rev sci instrum 2008; 79 :064302.
Search WWH ::




Custom Search