Biomedical Engineering Reference
In-Depth Information
[112] Mitri K, vauthier C, huang n, Menas a, ringard-lefebvre C, anselmi C, stambouli M,
rosilio v, vachon JJ, Bouchemal K. scale-up of nanoemulsion produced by emulsifica-
tion and solvent diffusion. J pharm sci 2012; 101 :4240-4247.
[113] Muller rh, harden D, Keck CM. Development of industrially feasible concentrated
30% and 40% nanoemulsions for intravenous drug delivery. Drug Dev ind pharm
2012; 38 :420-430.
[114] longmaid he iii, adams DF, neirinckx rD, harrison Cg, Brunner p, seltzer se,
Davis Ma, neuringer l, geyer rp. In vivo 19F nMr imaging of liver, tumor, and
abscess in rats. preliminary results. invest radiol 1985; 20 :141-145.
[115] Janjic JM, ahrens eT. Fluorine-containing nanoemulsions for Mri cell tracking. Wiley
interdiscip rev nanomed nanobiotechnol 2009; 1 :492-501.
[116] ahrens eT, Zhong J. In vivo Mri cell tracking using perfluorocarbon probes and
fluorine-19 detection. nMr Biomed 2013; 26 :860-871.
[117] Main Ml, goldman Jh, grayburn pa. Ultrasound contrast agents: balancing safety
versus efficacy. expert opin Drug saf 2009; 8 :49-56.
[118] Janjic JM, srinivas M, Kadayakkara DK, ahrens eT. self-delivering nanoemulsions
for dual fluorine-19 Mri and fluorescence detection. J am Chem soc 2008; 130 :
2832-2841.
[119] Balducci a, Wen Y, Zhang Y, helfer BM, hitchens TK, Meng Ws, Wesa aK, Janjic JM.
a novel probe for the non-invasive detection of tumor-associated inflammation.
oncoimmunology 2013; 2 :e23034.
[120] akers WJ, Kim C, Berezin M, guo K, Fuhrhop r, lanza gM, Fischer gM,
Daltrozzo e, Zumbusch a, Cai X, Wang lv, achilefu s. noninvasive photoacoustic
and fluorescence sentinel lymph node identification using dye-loaded perfluorocar-
bon nanoparticles. aCs nano 2011; 5 :173-182.
[121] rapoport n, nam Kh, gupta r, gao Z, Mohan p, payne a, Todd n, liu X, Kim T,
shea J, scaife C, parker Dl, Jeong eK, Kennedy aM. Ultrasound-mediated tumor
imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocar-
bon nanoemulsions. J Control release 2011; 153 :4-15.
[122] pan h, soman nr, schlesinger ph, lanza gM, Wickline sa. Cytolytic peptide
nanoparticles (“nanoBees”) for cancer therapy. Wiley interdiscip rev nanomed
nanobiotechnol 2011; 3 :318-327.
[123] soman nr, lanza gM, heuser JM, schlesinger ph, Wickline sa. synthesis and char-
acterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic
peptides. nano lett 2008; 8 :1131-1136.
[124] soman nr, Baldwin sl, hu g, Marsh Jn, lanza gM, heuser Je, arbeit JM, Wickline
sa, schlesinger ph. Molecularly targeted nanocarriers deliver the cytolytic peptide
melittin specifically to tumor cells in mice, reducing tumor growth. J Clin invest
2009; 119 :2830-2842.
[125] rapoport nY, Christensen Da, Fain hD, Barrows l, gao Z. Ultrasound-triggered drug
targeting of tumors in vitro and in vivo . Ultrasonics 2004; 42 :943-950.
[126] rapoport n. phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug
delivery to cancer. Wiley interdiscip rev nanomed nanobiotechnol 2012; 4 :492-510.
[127] stoll g, Basse-lusebrink T, Weise g, Jakob p. visualization of inflammation using (19)
F-magnetic resonance imaging and perfluorocarbons. Wiley interdiscip rev nanomed
nanobiotechnol 2012; 4 :438-447.
Search WWH ::




Custom Search