Biomedical Engineering Reference
In-Depth Information
[86] houghten rA, pinilla C, Blondelle Se, Appel Jr, Dooley CT, Cuervo Jh. Generation
and use of synthetic peptide combinatorial libraries for basic research and drug dis-
covery. Nature 1991; 354 :84-86.
[87] Lam KS, Lebl M, Krchnak V. The “one-bead-one-compound” combinatorial library
method. Chem rev 1997; 97 :411-448.
[88] Tong GJ, hsiao SC, Carrico ZM, Francis MB. Viral capsid DNA aptamer conjugates as
multivalent cell-targeting vehicles. J Am Chem Soc 2009; 131 :11174-11178.
[89] Salazar MD, ratnam M. The folate receptor: what does it promise in tissue-targeted
therapeutics? Cancer Metastasis rev 2007; 26 :141-152.
[90] Destito G, Yeh r, rae CS, Finn MG, Manchester M. Folic acid-mediated targeting of
cowpea mosaic virus particles to tumor cells. Chem Biol 2007; 14 :1152-1162.
[91] Qian ZM, Li h, Sun h, ho K. Targeted drug delivery via the transferrin receptor-
mediated endocytosis pathway. pharmacol rev 2002; 54 :561-587.
[92] huang rK, Steinmetz NF, Fu CY, Manchester M, Johnson Je. Transferrin-mediated
targeting of bacteriophage hK97 nanoparticles into tumor cells. Nanomedicine (Lond)
2011; 6 :55-68.
[93] Banerjee D, Liu Ap, Voss Nr, Schmid SL, Finn MG. Multivalent display and recep-
tor-mediated endocytosis of transferrin on virus-like particles. Chembiochem
2010; 11 :1273-1279.
[94] An p, Lei h, Zhang J, Song S, he L, Jin G, Liu X, Wu J, Meng L, Liu M, Shou C.
Suppression of tumor growth and metastasis by a VeGFr-1 antagonizing peptide iden-
tified from a phage display library. int J Cancer 2004; 111 :165-173.
[95] Brunel FM, Lewis JD, Destito G, Steinmetz NF, Manchester M, Stuhlmann h, Dawson
pe. hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell
imaging and tumor targeting. Nano Lett 2010; 10 :1093-1097.
[96] patel o, Shulkes A, Baldwin GS. Gastrin-releasing peptide and cancer. Biochim
Biophys Acta 2006; 1766 :23-41.
[97] Caravan p. Strategies for increasing the sensitivity of gadolinium based Mri contrast
agents. Chem Soc rev 2006; 35 :512-523.
[98] Caravan p, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio
JC Jr, Looby rJ, Supkowski rM, horrocks WD Jr, McMurry TJ, Lauffer rB. The inter-
action of MS-325 with human serum albumin and its effect on proton relaxation rates.
J Am Chem Soc 2002; 124 :3152-3162.
[99] Bryant Lh Jr, Brechbiel MW, Wu C, Bulte JW, herynek V, Frank JA. Synthesis and
relaxometry of high-generation (G = 5, 7, 9, and 10) pAMAM dendrimer-DoTA-gado-
linium chelates. J Magn reson imaging 1999; 9 :348-352.
[100] Wiener eC, Brechbiel MW, Brothers h, Magin rL, Gansow oA, Tomalia DA, Lauterbur
pC. Dendrimer-based metal chelates: a new class of magnetic resonance imaging con-
trast agents. Magn reson Med 1994; 31 :1-8.
[101] Allen M, Bulte JW, Liepold L, Basu G, Zywicke hA, Frank JA, Young M, Douglas T.
paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance con-
trast agents. Magn reson Med 2005; 54 :807-812.
[102] Anderson eA, isaacman S, peabody DS, Wang eY, Canary JW, Kirshenbaum K. Viral
nanoparticles donning a paramagnetic coat: conjugation of Mri contrast agents to the
MS2 capsid. Nano Lett 2006; 6 :1160-1164.
Search WWH ::




Custom Search