Biomedical Engineering Reference
In-Depth Information
[68] rae CS, Khor iW, Wang Q, Destito G, Gonzalez MJ, Singh p, Thomas DM, estrada MN,
powell e, Finn MG, Manchester M. Systemic trafficking of plant virus nanoparticles in
mice via the oral route. Virology 2005; 343 :224-235.
[69] Steinmetz NF, Ablack AL, hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG,
Lewis JD. intravital imaging of human prostate cancer using viral nanoparticles targeted
to gastrin-releasing peptide receptors. Small 2011; 7 :1664-1672.
[70] Wen AM, Lee KL, Yildiz i, Bruckman MA, Shukla S, Steinmetz NF. Viral nanoparticles
for in vivo tumor imaging. J Vis Exp 2012:e4352.
[71] Koudelka KJ, Destito G, plummer eM, Trauger SA, Siuzdak G, Manchester M.
endothelial targeting of cowpea mosaic virus (CpMV) via surface vimentin. pLoS
pathog 2009; 5 :e1000417.
[72] Koudelka KJ, rae CS, Gonzalez MJ, Manchester M. interaction between a 54-kilodalton
mammalian cell surface protein and cowpea mosaic virus. J Virol 2007; 81 :1632-1640.
[73] Steinmetz NF, Maurer J, Sheng h, Bensussan A, Maricic i, Kumar V, Braciak TA. Two
domains of vimentin are expressed on the surface of lymph node, bone and brain meta-
static prostate cancer lines along with the putative stem cell marker proteins CD44 and
CD133. Cancers 2011; 3 :2870-2885.
[74] Kokkinos Mi, Wafai r, Wong MK, Newgreen DF, Thompson eW, Waltham M. Vimentin
and epithelial-mesenchymal transition in human breast cancer—observations in vitro
and in vivo . Cells Tissues organs 2007; 185 :191-203.
[75] ivaska J, pallari hM, Nevo J, eriksson Je. Novel functions of vimentin in cell adhesion,
migration, and signaling. exp Cell res 2007; 313 :2050-2062.
[76] plummer eM, Thomas D, Destito G, Shriver Lp, Manchester M. interaction of cowpea
mosaic virus nanoparticles with surface vimentin and inflammatory cells in atheroscle-
rotic lesions. Nanomedicine (Lond) 2012; 7 :877-888.
[77] Shriver Lp, Koudelka KJ, Manchester M. Viral nanoparticles associate with regions of
inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol
2009; 211 :66-72.
[78] Maeda h, Wu J, Sawa T, Matsumura Y, hori K. Tumor vascular permeability and the epr
effect in macromolecular therapeutics: a review. J Control release 2000; 65 :271-284.
[79] Wen AM, Shukla S, Saxena p, Aljabali AA, Yildiz i, Dey S, Mealy Je, Yang AC,
evans DJ, Lomonossoff Gp, Steinmetz NF. interior engineering of a viral nanoparti-
cle and its tumor homing properties. Biomacromolecules 2012; 13 :3990-4001.
[80] Chauhan Vp, popovic Z, Chen o, Cui J, Fukumura D, Bawendi MG, Jain rK. Fluorescent
nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent
tumor penetration. Angew Chem int ed engl 2011; 50 :11417-11420.
[81] Geng Y, Dalhaimer p, Cai S, Tsai r, Tewari M, Minko T, Discher De. Shape effects of
filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007; 2 :
249-255.
[82] Aina oh, Liu r, Sutcliffe JL, Marik J, pan CX, Lam KS. From combinatorial chemistry
to cancer-targeting peptides. Mol pharm 2007; 4 :631-651.
[83] Ladner rC, Sato AK, Gorzelany J, de Souza M. phage display-derived peptides as
therapeutic alternatives to antibodies. Drug Discov Today 2004; 9 :525-529.
[84] Devlin JJ, panganiban LC, Devlin pe. random peptide libraries: a source of specific
protein binding molecules. Science 1990; 249 :404-406.
[85] Scott JK, Smith Gp. Searching for peptide ligands with an epitope library. Science
1990; 249 :386-390.
Search WWH ::




Custom Search