Biomedical Engineering Reference
In-Depth Information
[89] Tan W, Fang X, Li J, Liu X. molecular beacons: a novel DNA probe for nucleic acid and
protein studies. chemistry 2000; 6 :1107-1111.
[90] Santangelo P, Nitin N, Bao g. Nanostructured probes for RNA detection in living cells.
Ann Biomed eng 2006; 34 :39-50.
[91] Li Y, Zhou X, Ye D. molecular beacons: an optimal multifunctional biological probe.
Biochem Biophys Res co 2008; 373 :457-461.
[92] morrison Le, Halder Tc, Stols Lm. Solution-phase detection of polynucleotides using
interacting fluorescent labels and competitive hybridization. Anal Biochem 1989; 183 :
231-244.
[93] ellwood mS, collins m, Fritsch eF, Williams JI, Diamond Se, Brewen Jg. Strand dis-
placement applied to assays with nucleic acid probes. clin chem 1986; 32 :1631-1636.
[94] Kohler O, Jarikote DV, Seitz O. Forced intercalation probes (FIT Probes): thiazole orange
as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-
polymorphism detection. chembiochem 2005; 6 :69-77.
[95] Socher e, Jarikote DV, Knoll A, Roglin L, Burmeister J, Seitz O. FIT probes: peptide
nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantifica-
tion and single nucleotide polymorphism discovery. Anal Biochem 2008; 375 :318-330.
[96] ma Z, Taylor JS. Nucleic acid-triggered catalytic drug release. Proc Natl Acad Sci U S
A 2000; 97 :11159-11163.
[97] ma Z, Taylor JS. Nucleic acid triggered catalytic drug and probe release: a new concept
for the design of chemotherapeutic and diagnostic agents. Bioorg med chem 2001; 9 :
2501-2510.
[98] ma Z, Taylor JS. PNA-based RNA-triggered drug-releasing system. Bioconjug chem
2003; 14 :679-683.
[99] Brunner J, mokhir A, Kraemer R. DNA-templated metal catalysis. J Am chem Soc
2003; 125 :12410-12411.
[100] Zelder FH, Brunner J, Kramer R. DNA-templated catalysis using a metal-cleavable
linker. Chem Commun (Camb) 2004:902-903.
[101] Boll I, Kramer R, Brunner J, mokhir A. Templated metal catalysis for single nucleotide
specific DNA sequence detection. J Am chem Soc 2005; 127 :7849-7856.
[102] cai J, Li X, Yue X, Taylor JS. Nucleic acid-triggered fluorescent probe activation by the
Staudinger reaction. J Am chem Soc 2004; 126 :16324-16325.
[103] Franzini Rm, Kool eT. efficient nucleic acid detection by templated reductive quencher
release. J Am chem Soc 2009; 131 :16021-16023.
[104] Furukawa K, Abe H, Hibino K, Sako Y, Tsuneda S, Ito Y. Reduction-triggered fluorescent
amplification probe for the detection of endogenous RNAs in living human cells.
Bioconjug chem 2009; 20 :1026-1036.
[105] Pianowski Z, gorska K, Oswald L, merten cA, Winssinger N. Imaging of mRNA in
live cells using nucleic acid-templated reduction of azidorhodamine probes. J Am chem
Soc 2009; 131 :6492-6497.
[106] geary RS. Antisense oligonucleotide pharmacokinetics and metabolism. expert Opin
Drug metab Toxicol 2009; 5 :381-391.
[107] Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate
morpholino antisense oligomers. curr Opin Pharmacol 2005; 5 :550-555.
[108] Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid
delivery. Int J mol Sci 2008; 9 :1276-1320.
Search WWH ::




Custom Search