Biomedical Engineering Reference
In-Depth Information
[68] Zhang HY, mao J, Zhou D, Xu Y, Thonberg H, Liang Z, Wahlestedt c. mRNA accessible
site tagging (mAST): a novel high throughput method for selecting effective antisense
oligonucleotides. Nucleic Acids Res 2003; 31 :e72.
[69] Fang H, Yue X, Li X, Taylor JS. Identification and characterization of high affinity anti-
sense PNAs for the human unr (upstream of N-ras) mRNA which is uniquely overex-
pressed in mcF-7 breast cancer cells. Nucleic Acids Res 2005; 33 :6700-6711.
[70] Allawi HT, Dong F, Ip HS, Neri BP, Lyamichev VI. mapping of RNA accessible sites by
extension of random oligonucleotide libraries with reverse transcriptase. RNA 2001; 7 :
314-327.
[71] Fang H, Shen Y, Taylor JS. Native mRNA antisense-accessible sites library for the selec-
tion of antisense oligonucleotides, PNAs, and siRNAs. RNA 2010; 16 :1429-1435.
[72] Spitale Rc, crisalli P, Flynn RA, Torre eA, Kool eT, chang HY. RNA SHAPe analysis
in living cells. Nat chem Biol 2013; 9 :18-20.
[73] Karkare S, Bhatnagar D. Promising nucleic acid analogs and mimics: characteristic fea-
tures and applications of PNA, LNA, and morpholino. Appl microbiol Biotechnol
2006; 71 :575-586.
[74] Veedu RN, Wengel J. Locked nucleic acids: promising nucleic acid analogs for
therapeutic applications. chem Biodivers 2010; 7 :536-542.
[75] Prakash TP. An overview of sugar-modified oligonucleotides for antisense therapeutics.
chem Biodivers 2011; 8 :1616-1641.
[76] Deleavey gF, Damha mJ. Designing chemically modified oligonucleotides for targeted
gene silencing. chem Biol 2012; 19 :937-954.
[77] Weisbrod SH, marx A. Novel strategies for the site-specific covalent labelling of nucleic
acids. chem commun (camb) 2008:5675-5685.
[78] Lallana e, Riguera R, Fernandez-megia e. Reliable and efficient procedures for the con-
jugation of biomolecules through Huisgen azide-alkyne cycloadditions. Angew chem
2011; 50 :8794-8804.
[79] Bao g, Rhee WJ, Tsourkas A. Fluorescent probes for live-cell RNA detection. Annu Rev
Biomed eng 2009; 11 :25-47.
[80] Tyagi S. Imaging intracellular RNA distribution and dynamics in living cells. Nat methods
2009; 6 :331-338.
[81] Kolpashchikov Dm. Binary probes for nucleic acid analysis. chem Rev 2010; 110 :
4709-4723.
[82] Okamoto A. ecHO probes: a concept of fluorescence control for practical nucleic acid
sensing. chem Soc Rev 2011; 40 :5815-5828.
[83] Armitage BA. Imaging of RNA in live cells. curr Opin chem Biol 2011; 15 :806-812.
[84] Jun me, Roy B, Ahn KH. “Turn-on” fluorescent sensing with “reactive” probes. chem
commun (camb) 2011; 47 :7583-7601.
[85] Shibata A, Abe H, Ito Y. Oligonucleotide-templated reactions for sensing nucleic acids.
molecules 2012; 17 :2446-2463.
[86] guo J, Ju J, Turro NJ. Fluorescent hybridization probes for nucleic acid detection. Anal
Bioanal chem 2012; 402 :3115-3125.
[87] Su X, Xiao X, Zhang c, Zhao m. Nucleic acid fluorescent probes for biological sensing.
Appl Spectrosc 2012; 66 :1249-1262.
[88] Wang K, Huang J, Yang X, He X, Liu J. Recent advances in fluorescent nucleic acid
probes for living cell studies. Analyst 2013; 138 :62-71.
Search WWH ::




Custom Search