Biomedical Engineering Reference
In-Depth Information
[13] Ko H, Singamaneni S, Tsukruk VV. nanostructured surfaces and assemblies as SERS
media. Small 2008; 4 :1576-1599.
[14] campion a, Kambhampati P. Surface-enhanced Raman scattering. chem Soc Rev
1998; 27 :241-250.
[15] Li Jf, Huang Yf, Ding Y, Yang ZL, Li SB, Zhou XS, fan fR, Zhang W, Zhou ZY, Wu DY.
Shell-isolated nanoparticle-enhanced Raman spectroscopy. nature 2010; 464 :392-395.
[16] gandra n, abbas a, Tian L, Singamaneni S. Plasmonic planet-satellite analogues: hier-
archical self-assembly of gold nanostructures. nano Lett 2012; 12 :2645-2651.
[17] Liu T-Y, Tsai K-T, Wang H-H, chen Y, chen Y-H, chao Y-c, chang H-H, Lin c-H, Wang
J-K, Wang Y-L. functionalized arrays of Raman-enhancing nanoparticles for capture and
culture-free analysis of bacteria in human blood. nat commun 2011; 2 :538.
[18] Qian X, Peng X-H, ansari Do, Yin-goen Q, chen gZ, Shin DM, Yang L, Young an,
Wang MD, nie S. In vivo tumor targeting and spectroscopic detection with surface-
enhanced Raman nanoparticle tags. nat Biotechnol 2008; 26 :83-90.
[19] Keren S, Zavaleta c, cheng Z, de la Zerda a, gheysens o, gambhir SS. noninvasive
molecular imaging of small living subjects using Raman spectroscopy. Proc natl acad
Sci u S a 2008; 105 :5844-5849.
[20] Kircher Mf, de la Zerda a, Jokerst JV, Zavaleta cL, Kempen PJ, Mittra E, Pitter K,
Huang R, campos c, Habte f, Sinclair R, Brennan cW, Mellinghoff iK, Holland Ec,
gambhir SS. a brain tumor molecular imaging strategy using a new triple-modality
MRi-photoacoustic-Raman nanoparticle. nat Med 2012; 18 :829-834.
[21] Mohs aM, Mancini Mc, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD,
nie  S.  Hand-held spectroscopic device for in vivo and intraoperative tumor detection:
contrast enhancement, detection sensitivity, and tissue penetration. anal Methods
2010; 82 :9058-9065.
[22] Sourisseau c. Polarization measurements in macro- and micro-Raman spectroscopies:
molecular orientations in thin films and azo-dye containing polymer systems. chem Rev
2004; 104 :3851-3892.
[23] Rayleigh L. investigations in optics, with special reference to the spectroscope. Philos
Mag 1879; 8 :261-274.
[24] conrady aE. Applied Optics and Optical Design, Part 2 . new York: Dover Publications;
1960.
[25] Matousek P. Deep non-invasive Raman spectroscopy of living tissue and powders. chem
Soc Rev 2007; 36 :1292-1304.
[26] Stone n, Kerssens M, Lloyd gR, faulds K, graham D, Matousek P. Surface enhanced
spatially offset Raman spectroscopic (SESoRS) imaging—the next dimension. chem
Sci 2011; 2 :776-780.
[27] Wu J, Wang Y, Perelman L, itzkan i, Dasari RR, feld MS. 3-dimensional imaging of
objects embedded in turbid media with fluorescence and Raman-spectroscopy. appl opt
1995; 34 :3425-3430.
[28] Matousek P, Everall n, Towrie M, Parker aW. Depth profiling in diffusely scattering media
using Raman spectroscopy and picosecond Kerr gating. appl Spectrosc 2005; 59 :200-205.
[29] Stone n, faulds K, graham D, Matousek P. Prospects of deep Raman spectroscopy
for  noninvasive detection of conjugated surface enhanced resonance Raman scattering
nanoparticles buried within 25 mm of mammalian tissue. anal Methods 2010; 82 :
3969-3973.
Search WWH ::




Custom Search