Biomedical Engineering Reference
In-Depth Information
[89] Hagooly A, Rossin R, Welch mJ. Small molecule Receptors as Imaging Targets. In:
Semmler W, Schwaiger m, editors. Molecular Imaging II . berlin, Heidelberg: Springer;
2008. p 93-129.
[90] petersen AL, binderup T, Rasmussen p, Henriksen JR, elema DR, Kjaer A,
Andresen TL. 64Cu loaded liposomes as positron emission tomography imaging
agents. biomaterials 2011; 32 :2334-2341.
[91] medina Op, pillarsetty N, glekas A, punzalan b, Longo V, gonen m, Zanzonico p,
Smith-Jones p, Larson Sm. Optimizing tumor targeting of the lipophilic egfR-binding
radiotracer SKI 243 using a liposomal nanoparticle delivery system. J Control Release
2011; 149 :292-298.
[92] Oku N, Yamashita m, Katayama Y, Urakami T, Hatanaka K, Shimizu K, Asai T,
Tsukada H, Akai S, Kanazawa H. peT imaging of brain cancer with positron emitter-
labeled liposomes. Int J pharm 2011; 403 :170-177.
[93] mcCarthy JR, Weissleder R. multifunctional magnetic nanoparticles for targeted
imaging and therapy. Adv Drug Deliv Rev 2008; 60 :1241-1251.
[94] Heesakkers RA, Hovels Am, Jager gJ, van den bosch HC, Witjes JA, Raat Hp,
Severens JL, Adang em, van der Kaa CH, futterer JJ, barentsz J. mRI with a lymph-
node-specific contrast agent as an alternative to CT scan and lymph-node dissection
in patients with prostate cancer: a prospective multicohort study. Lancet Oncol
2008; 9 :850-856.
[95] Choi JS, park JC, Nah H, Woo S, Oh J, Kim Km, Cheon gJ, Chang Y, Yoo J, Cheon J.
A hybrid nanoparticle probe for dual-modality positron emission tomography and
magnetic resonance imaging. Angew Chem Int ed engl 2008; 47 :6259-6262.
[96] glaus C, Rossin R, Welch mJ, bao g. In vivo evaluation of (64)Cu-labeled magnetic
nanoparticles as a dual-modality peT/mR imaging agent. bioconjug Chem 2010; 21 :
715-722.
[97] Stelter L, pinkernelle Jg, michel R, Schwartlander R, Raschzok N, morgul mH,
Koch m, Denecke T, Ruf J, baumler H, Jordan A, Hamm b, Sauer Im, Teichgraber
U. modification of aminosilanized superparamagnetic nanoparticles: feasibility of
multimodal detection using 3T mRI, small animal peT, and fluorescence imaging.
mol Imaging biol 2010; 12 :25-34.
[98] Yang X, Hong H, grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang
Y, Nickles RJ, Cai W, Steeber DA, gong S. cRgD-functionalized, DOX-conjugated,
and (64)Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer
drug delivery and peT/mR imaging. biomaterials 2011; 32 :4151-4160.
[99] Nahrendorf m, Keliher e, marinelli b, Leuschner f, Robins CS, gerszten Re, pittet mJ,
Swirski fK, Weissleder R. Detection of macrophages in aortic aneurysms by nanopar-
ticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc
biol 2011; 31 :750-757.
[100] beer AJ, Kessler H, Wester HJ, Schwaiger m. peT imaging of integrin alphavbeta3
expression. Theranostics 2011; 1 :48-57.
[101] Tabatabai g, Tonn JC, Stupp R, Weller m. The role of integrins in glioma biology and
anti-glioma therapies. Curr pharm Des 2011; 17 :2402-2410.
[102] Anderson CJ, bulte JW, Chen K, Chen X, Khaw bA, Shokeen m, Wooley KL,
Vanbrocklin Hf. Design of targeted cardiovascular molecular imaging probes. J Nucl
med 2010; 51 (Suppl 1):3S-17S.
Search WWH ::




Custom Search