Biomedical Engineering Reference
In-Depth Information
[72] Yang ST, Luo J, Zhou Q, Wang H. pharmacokinetics, metabolism and toxicity of carbon
nanotubes for biomedical purposes. Theranostics 2012; 2 :271-282.
[73] Wu W, Li R, bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y. Covalently combining
carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano
2009; 3 :2740-2750.
[74] Hong SY, Tobias g, Al-Jamal KT, ballesteros b, Ali-boucetta H, Lozano-perez S,
Nellist pD, Sim Rb, finucane C, mather SJ, green mLH, Kostarelos K, Davis bg.
filled and glycosylated carbon nanotubes for in vivo radioemitter localization and
imaging. Nat mater 2010; 9 :485-490.
[75] Lacerda L, Soundararajan A, Singh R, pastorin g, Al-Jamal KT, Turton J, frederik p,
Herrero mA, Li S, bao A, emfietzoglou D, mather S, phillips WT, prato m, bianco A,
goins b, Kostarelos K. Dynamic imaging of functionalized multi-walled carbon nanotube
systemic circulation and urinary excretion. Adv mater 2008; 20 :225-230.
[76] Singh R, pantarotto D, Lacerda L, pastorin g, Klumpp C, prato m, bianco A, Kostarelos
K. Tissue biodistribution and blood clearance rates of intravenously administered carbon
nanotube radiotracers. proc Natl Acad Sci U S A 2006; 103 :3357-3362.
[77] Antonelli A, Serafini S, menotta m, Sfara C, pierige f, giorgi L, Ambrosi g, Rossi L,
magnani m. Improved cellular uptake of functionalized single-walled carbon nanotubes.
Nanotechnology 2010; 21 :22.
[78] Kang b, Chang S, Dai Y, Yu D, Chen D. Cell response to carbon nanotubes: size-dependent
intracellular uptake mechanism and subcellular fate. Small 2010; 6 :2362-2366.
[79] Kang b, Li J, Chang S, Dai m, Ren C, Dai Y, Chen D. Subcellular tracking of drug
release from carbon nanotube vehicles in living cells. Small 2012; 8 :777-782.
[80] Kennedy LC, bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day eS, West JL, Drezek
RA. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies.
Small 2011; 7 :169-183.
[81] Weissleder R. A clearer vision for in vivo imaging. Nat biotech 2001; 19 :316-317.
[82] Liu L, Ding H, Yong K-T, Roy I, Law W-C, Kopwitthaya A, Kumar R, erogbogbo f,
Zhang X, prasad p. Application of gold nanorods for plasmonic and magnetic imaging of
cancer cells. plasmonics 2011; 6 :105-112.
[83] Xia Y, Li W, Cobley Cm, Chen J, Xia X, Zhang Q, Yang m, Cho eC, brown pK. gold
nanocages: from synthesis to theranostic applications. Acc Chem Res 2011; 44 :914-924.
[84] Cheng W, Dong S, Wang e. Iodine-induced gold-nanoparticle fusion/fragmentation/
aggregation and iodine-linked nanostructured assemblies on a glass substrate. Angew
Chem Int ed engl 2003; 42 :449-452.
[85] Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman pS, Quesada CA, Koch Ae,
Kotov NA, Wang X. 125I-Labeled gold nanorods for targeted imaging of inflammation.
ACS Nano 2011; 5 :8967-8973.
[86] Shao X, Agarwal A, Rajian JR, Kotov NA, Wang X. Synthesis and bioevaluation of
125I-labeled gold nanorods. Nanotechnology 2011; 22 :135102.
[87] Kim Y-H, Jeon J, Hong SH, Rhim W-K, Lee Y-S, Youn H, Chung J-K, Lee mC, Lee DS,
Kang KW, Nam J-m. Tumor targeting and imaging using cyclic RgD-pegylated gold
nanoparticle probes with directly conjugated iodine-125. Small 2011; 7 :2052-2060.
[88] Jang b, park S, Kang SH, Kim JK, Kim S-K, Kim I-H, Choi Y. gold nanorods for target
selective SpeCT/CT imaging and photothermal therapy in vivo . Quant Imaging med
Surg 2012; 2 :1-11.
Search WWH ::




Custom Search