Geology Reference
In-Depth Information
[173] Wang, y., y. Huang, C. M. o'D. Alexander, M. Fogel,
and g. Cody (2005), Molecular and compound-specific
hydrogen isotope analyses of insoluble organic matter
from different carbonaceous chondrite groups, Geochim.
Cosmochim. Acta , 69 , 3711-3721.
[174] yokoyama, T., V. K. Rai, C. M. o'D. Alexander, R. S.
Lewis, R. W. Carlson, S. B. Shirey, M. H. Thiemens, and
R. J. Walker (2007), osmium isotope evidence for uni-
form distribution of s- and r-process components in the
early solar system, Earth Planet. Sci. Lett. 259 , 567-580.
[185] Martins, Z., C. M. o'D. Alexander, g. E. orzechowska,
M. L. Fogel, and P. Ehrenfreund (2007), indigenous
amino acids in primitive CR meteorites, Meteorit. Planet.
Sci. , 42 , 2125-2136.
[186] Morlok, A., and g. Libourel (2013), Aqueous alteration in
CR chondrites: Meteorite parent body processes as ana-
logue for long-term corrosion processes relevant for nuclear
waste disposal, Geochim. Cosmochim. Acta , 103 , 76-103.
[187] Weisberg, M. K., and H. Huber (2007), The gRo 95577
CR1 chondrite and hydration of the CR parent body,
Meteorit. Planet. Sci. , 42 , 1495-1503.
[188] Weisberg, M. K., and M. Prinz (2000), The grosvenor
Mountains 95577 CR1 chondrite and hydration of the
CR chondrites, Meteorit. Planet. Sci. , 35 (Suppl.), A168.
26. QUE 99177—CR2 CHoNDRiTE
[175] Abreu, N. M. (2013), A unique omphacite, amphibole,
and graphite-bearing clast in Queen Alexandra Range
(QUE), 99177: A metamorphosed xenolith in a pristine
CR3 chondrite, Geochim. Cosmochim. Acta , 105 , 56-72.
[176] Abreu, N. M., and A. J. Brearley (2010), Early solar
system processes recorded in the matrices of two highly
pristine CR3 carbonaceous chondrites, MET 00426 and
QUE 99177, Geochim. Cosmochim. Acta , 74 , 1146-1171.
[177] Floss, C., and F. Stadermann (2009), Auger Nanoprobe
analysis of presolar ferromagnesian silicate grains from
primitive CR chondrites QUE 99177 and MET 00426,
Geochim. Cosmochim. Acta , 73 , 2415-2440.
[178] Floss, C., and F. Stadermann (2009), High abundances of
circumstellar and interstellar C-anomalous phases in the
primitive CR3 chondrites QUE 99177 and MET 00426,
Astrophys. J. , 697 , 1242-1255.
[179] glavin, D. P., and J. P. Dworkin (2009), Enrichment of
the amino acid L-isovaline by aqueous alteration on Ci
and CM meteorite parent bodies, Proc. Nat. Acad. Sci. ,
106 , 5487-5492.
28. gRo 95517—EH3 CHoNDRiTE
[189] guan, y., g. R. Huss, g. J. MacPherson, and g. J.
Wasserburg (2000), Calcium-aluminum-rich inclusions
from enstatite chondrites: indigenous or foreign? Science ,
289 , 1330-1333.
[190] guan, y., K. D. McKeegan, and g. J. MacPherson
(2000), oxygen isotopes in calcium-aluminum-rich inclu-
sions from enstatite chondrites: New evidence for a single
CAi source in the solar nebula, Earth Planet. Sci. Lett. ,
181 , 271-277.
[191] Patzer, A., and L. Schultz (2001), Noble gases in enstatite
chondrites i: Exposure ages, pairing, and weathering
effects, Meteorit. Planet. Sci. , 36 , 947-961.
[192] Patzer, A., and L. Schultz (2002), Noble gases in enstatite
chondrites ii: The trapped component, Meteorit. Planet.
Sci. , 37 , 601-612.
29. ALH 81189—EH3 CHoNDRiTE
27. gRo 95577—CR1 CHoNDRiTE
[193] Ebata, S., K. Nagashima, S. itoh, S. Kobayashi,
N.  Sakamoto, T. J. Fagan, and H. yurimoto (2006),
Presolar silicate grains in enstatite chondrites, Lunar
Planet. Sci. , 37 , abstract 1619.
[194] Ebata, S., T. J. Fagan, and H. yurimoto (2008),
identification of silicate and carbonaceous presolar
grains by SiMS in the type-3 enstatite chondrite
ALH A81189, Applied Surface Science , 255 , 1468-1471.
[195] Fagan, T. J., A. N. Krot, and K. Keil (2000), Calcium-
aluminum-rich inclusions in enstatite chondrites,
Meteorit. Planet. Sci. , 35 , 771-781.
[196] Fagan, T. J., S. Kataoka, A. yoshida, and K. Norose
(2010), Transition to low oxygen fugacities in the solar
nebula recorded by EH3 chondrite ALH A81189, Lunar
Planet. Sci. Conf. , 41 , LPi Contribution No. 1533, p. 1534.
[180] Alexander, M., H. Fogel, yabuta, and g. D. Cody (2007),
The origin and evolution of chondrites recorded in the ele-
mental and isotopic compositions of their macromolecular
organic matter, Geochim. Cosmochim. Acta , 71 , 4380-4403.
[181] Perronnet, M., and M. E. Zolensky (2006), Charac-
terization and quantification of metallic and mineral
phases in the highly hydrated grosvenor Mountains
95577 CR1 chondrite, 37th Annual Lunar Planet. Sci.
Conf. , abstract 2402.
[182] Busemann, H. , C. M. o'D. Alexander, and L. R. Nittler
( 2007), Characterization of insoluble organic matter in
meteorites by microRaman spectroscopy, Meteorit.
Planet. Sci. , 42 , 1387-1416.
[183] Busemann, H. , A. F. young , C. M. o'D. Alexander , P.
Hoppe , S. Mukhopadhyay, and L. R. Nittler ( 2006),
interstellar chemistry recorded in organic matter from
primitive meteorites, Science , 312 , 727-730.
[184] glavin, D. P., and J. P. Dworkin (2009), Enrichment of
the amino acid L-isovaline by aqueous alteration on Ci
and CM meteorite parent bodies, Proc. Nat. Acad. Sci. ,
106 , 5487-5492.
30. PCA 91020—EL3 CHoNDRiTE
[197] izawa, M. R. M., R. L. Flemming, N. R. Banerjee, and
P. J. A. McCausland (2011), Micro-X-ray diffraction
assessment of shock stage in enstatite chondrites,
Meteorit. Planet. Sci. , 46 , 638-651.
Search WWH ::




Custom Search