Geology Reference
In-Depth Information
[144] grossman, J. N., A. E. Rubin, and g. J. MacPherson
(1988), ALH 85085: A unique volatile-poor carbonaceous
chondrite with possible implications for nebular fraction-
ation processes, Earth Planet. Sci. Letters , 91 , 33-54.
[145] grossman, L. (2010), Vapor-condensed phase processes
in the early solar system, Meteorit. Planet. Sci. , 45 , 7-20.
[146] Kimura, M., A. El goresy, H. Palme, and E. Zinner
(1993), Ca-,Al-rich inclusions in the unique chondrite
ALH 85085: Petrology, chemistry and isotopic composi-
tions, Geochim. Cosmochim. Acta , 57 , 2329-2359.
[147] Kimura, M., T. Mikouchi, A. Suzuki, M. Miyahara,
E.  ohtani, and A. El goresy (2009), Kushiroite,
CaAlAlSio 6 : A new mineral of the pyroxene group from
the ALH 85085 CH chondrite, and its genetic signifi-
cance in refractory inclusions, American Mineralogist ,
94 , 1479-1482.
[148] Scott, E. R. D. (1988), A new kind of primitive chondrite,
Allan Hills 85085, Earth Planet. Sci. Letters , 91 , 1-18.
[149] Wasson, J. T., and g. W. Kallemeyn (1990), Allan Hills
85085: A subchondritic meteorite of mixed nebular and
regolithic heritage, Earth Planet. Sci. Letters , 101 , 148-161.
[150] Weber, D., E. K. Zinner, and A. Bischoff (1994), An ion
microprobe study of an osbornite-bearing inclusion from
ALH 85085, Meteoritics , 29 , 547-548.
[151] Weisberg, M. K., M. Prinz, and C. E. Nehru (1988),
Petrology of ALH 85085: A chondrite with unique char-
acteristics, Earth Planet. Sci. Letters , 91 , 19-32.
[152] Weisberg, M. K., C. E. Nehru, M. Prinz (1990), The
Bencubbin chondrite breccia and its relationship to CR
chondrites and the ALH 85085 chondrite, Meteoritics ,
25 , 269-279.
[153] Weisberg, M. K., M. Prinz, R. N. Clayton, T. K. Mayeda,
M. M. grady, and C. T. Pillinger (1995), The CR chondrite
clan, Proc. NiPR Symp. Antarctic Meteorites , 8 , 11-32.
[159] Cody, g. D., C. M. o'D. Alexander, H. yabuta, A. L. D.
Kilcoyne, T. Araki, H. Ade, P. Dera, M. Fogel, B. Militzer,
and B. o. Mysen (2008), organic thermometry for
chondritic parent bodies, Earth Planet. Sci. Lett. , 272 ,
446-455.
[160] Connolly, H. C., g. R. Huss, and g. J. Wasserburg (2001),
on the formation of Fe-Ni metal in Renazzo-like carbo-
naceous chondrites, Geochim. Cosmochim. Acta , 65 ,
4567-4588.
[161] glavin, D. P., and J. P. Dworkin (2009), Enrichment of
the amino acid L-isovaline by aqueous alteration on Ci
and CM meteorite parent bodies, Proc. Nat. Acad. Sci. ,
106 , 5487-5492.
[162] Horan, M. F., R. J. Walker, J. W. Morgan, J. N. grossman,
and A. E. Rubin (2003), Highly siderophile elements in
chondrites, Chem. Geol. , 196 , 27-42.
[163] Hutcheon, i. D., K. K. Marhas, A. N. Krot, J. N.
goswami, and R. H. Jones (2009), 26 Al in plagioclase-rich
chondrules in carbonaceous chondrites: Evidence for an
extended duration of chondrule formation, Geochim.
Cosmochim. Acta , 73 , 5080-5099.
[164] Kong, P. (1999), Distribution of siderophile elements in
CR chondrites: Evidence for evaporation and reconden-
sation during chondrule formation, Geochim. Cosmochim.
Acta , 63 , 2637-2652.
[165] Krot, A. N., C. M. Hohenberg, A. P. Meshik, o. V.
Pravdivtseva, H. Hiyagon, M. i. Petaev, M. K. Weisberg,
A. Meibom, and K. Keil (2002), Two-stage asteroidal
alteration of the Allende dark inclusions, Meteorit.
Planet. Sci. , 37 (Suppl.), A82.
[166] Krot, A. N., A. Meibom, M. K. Weisberg, and K. Keil
(2002), The CR chondrite clan: implications for early
solar system processes, Meteorit. Planet. Sci. , 37 , 1451.
[167] Krot, A. N., and K. Keil (2002), Anorthite-rich chon-
drules in CR and CH carbonaceous chondrites: genetic
link between Ca, Al-rich inclusions and ferromagnesian
chondrules, Meteorit. Planet. Sci. , 37 , 91-111.
[168] Krot, A. N., g. Libourel, and Chaussidon (2006), oxygen
isotope compositions of chondrules in CR chondrites,
Geochim. Cosmochim. Acta , 70 , 767-779.
[169] Makide, K., K. Nagashima, A. N. Krot, g. R. Huss,
i. D. Hutcheon, and A. Bischoff (2009), oxygen- and
magnesium-isotope compositions of calcium-aluminum-
rich inclusions from CR2 carbonaceous chondrites,
Geochim. Cosmochim. Acta , 73 , 5018-5050.
[170] Martins, Z., C. M. o'D. Alexander, g. E. orzechowska,
M. L. Fogel, and P. Ehrenfreund (2007), indigenous
amino acids in primitive CR meteorites, Meteorit. Planet.
Sci. 42 , 2125-2136.
[171] oura, y., C. Takahashi, and M. Ebihara (2004), Boron
and chlorine abundances in Antarctic chondrites: A PgA
study, Antartic Meteorite Research , 17 , 172.
[172] Pearson, V. K., M. A. Sephton, i. A. Franchi, J. M.
gibson, and i. gilmour (2006 ), Carbon and nitrogen in
carbonaceous chondrites: Elemental abundances and
stable isotopic compositions, Meteorit. Planet. Sci. 41 ,
1899-1918.
25. EET 92042—CR2 CHoNDRiTE
[154] Abreu, N. M., and A. J. Brearley ( 2005), HRTEM and
EFTEM Studies of phyllosilicate-organic matter associa-
tions in matrix and dark inclusions in the EET 92042 CR2
carbonaceous chondrite, Lunar Planet. Sci. Conf. , 36 , 1826.
[155] Busemann, H. , C. M. o'D. Alexander, and L. R. Nittler
( 2007), Characterization of insoluble organic matter in
meteorites by microRaman spectroscopy, Meteorit.
Planet. Sci. , 42 , 1387-1416.
[156] Busemann, H. , A. F. young , C. M. o'D. Alexander , P.
Hoppe , S. Mukhopadhyay , L. R. Nittler ( 2006),
interstellar chemistry recorded in organic matter from
primitive meteorites, Science , 312 , 727-730.
[157] Chaussidon, M., g. Libourel, and A. N. Krot (2008),
oxygen isotopic constraints on the origin of magnesian
chondrules and on the gaseous reservoirs in the early
solar system, Geochim. Cosmochim. Acta , 72 , 1924-1938.
[158] Cody, g., and C. M. o'D. Alexander (2005), NMR
studies of chemical structural variation of insoluble
organic matter from different carbonaceous chondrite
groups, Geochim. Cosmochim. Acta , 69 , 1085-1097.
Search WWH ::




Custom Search