Geology Reference
In-Depth Information
Plate reference list
1. WSg 95300—H3.3 CHoNDRiTE
[11] Niihara, T., N. imae, and H. Kojima (2008), Petrology and
mineralogy of an impact melted H chondrite, LAP02240,
Lunar Planet. Sci. Conf. , 39 (1391), 1856.
[12] Swindle, T. D., C. E. isachsen, J. R. Weirich, and D. A.
Kring (2009), 40 Ar- 39 Ar ages of H-chondrite impact melt
breccias, Meteorit. Planet. Sci. , 44 , 747-762.
[13] Swindle, T. D., D. A. Kring, and J. R. Weirich (2013),
40 Ar/ 39 Ar ages of impacts involving ordinary chondrite
meteorites, in Advances in 40 Ar/ 39 Ar dating from archaeology
to planetary sciences , edited by F. Jourdan, D. F. Mark, and
C. Verati, geological Society, London, Spec. Pub. 378,
10.1144/SP378.6.
[14] Wittmann, A., T. D. Swindle, L. C. Cheek, E. A. Frank,
and D. A. Kring (2010), impact cratering on the H chon-
drite parent asteroid, J. Geophys. Res. , 115 (E7), CiteiD
E07009.
[15] Niihara, T., N. imae, K. Misawa, H. Kojima (2011),
Petrology and mineralogy of the shock-melted H chon-
drites yamato 791088 and LaPaz ice Field 02240, Polar
Science , 4 , 558-573.
[1] Lofgren, g. E., and Le, L. (2002), Experimental reproduction
of Type iB chondrules, Lunar Planet. Sci. , 33 , 1746.
[2] Nittler, L. R., C. M. o'D. Alexander, R. gallino, P. Hoppe,
A. N. Nguyen, F. J. Stadermann, and E. K. Zinner (2008),
Aluminum-, calcium- and titanium-rich oxide stardust in
ordinary chondrite meteorites and erratum, Astrophys. J. ,
682 , 1450-1478.
[3] Alexander, C. M. o'D., S. D. Newsome, M. L. Fogel, L. R.
Nittler, H. Busemann, and g. D. Cody (2010), Deuterium
enrichments in chondritic macromolecular material:
implications for the origin and evolution of organics, water
and asteroids, Geochim. Cosmochim. Acta , 74 , 4417-4437.
2. LEW 85320—H5 CHoNDRiTE
[4] grady, M. M., E. K. gibson Jr., i. P. Wright, and C. T.
Pillinger (1989), The formation of weathering products on
the LEW 85320 ordinary chondrite: Evidence from carbon
and oxygen stable isotope compositions and implications
for carbonates in SNC meteorites, Meteoritics , 24 , 1-7.
[5] Jull, A. J. T., S. Cheng, J. L. gooding, and M. A. Velbel
(1988), Rapid growth of magnesium-carbonate weathering
products in a stony meteorite from Antarctica, Science ,
242 , 417-419.
[6] Velbel, M. A., and D. T. Long (1989), Meteoritic source of
large-ion lithophile elements in terrestrial nesquehonite from
Antarctic meteorite LEW 85320 (H5), Meteoritics , 24 , 334.
[7] Velbel, M. A., D. T. Long, and J. L. gooding (1991),
Terrestrial weathering of Antarctic stone meteorites:
Formation of Mg-carbonates on ordinary chondrites,
Geochim. Cosmochim. Acta , 55 , 67-76.
[8] Welten, K. C., L. Lindner, C. Alderliesten, and K. van der
Borg (1999), Terrestrial ages of ordinary chondrites from
the Lewis Cliff stranding area, East Antarctica, Meteorit.
Planet. Sci. , 34 , 558-569.
[9] Velbel (2012), Terrestrial weathering of ordinary chon-
drites in nature and continuing during laboratory storage
and processing: Review and implications for Hayabusa
sample integrity, Meteorit. Planet. Sci. , online Early.
4. QUE 97008—L3.05 CHoNDRiTE
[16] Alexander C. M.o'D. , S. D. Newsome, M. L. Fogel, L. R.
Nittler, H. Busemann, and g. D. Cody (2010), Deuterium
enrichments in chondritic macromolecular material:
implications for the origin and evolution of organics, water
and asteroids, Geochim. Cosmochim. Acta , 74 , 4417-4437.
[17] Busemann, H., C. M. o'D. Alexander, and L. R. Nittler
(2007), Characterization of insoluble organic matter in
primitive meteorites by microRaman spectroscopy,
Meteorit. Planet. Sci. , 42 , 1387-1416.
[18] grossman, J. N., and A. J. Brearley (2005), The onset of
metamorphism in ordinary and carbonaceous chondrites,
Meteorit. Planet. Sci. , 40 , 87-122.
[19] D. S. Lauretta, H. Nagahara, and C. M. o'D. Alexander
(2006), Petrology and origin of ferromagnesian silicate
chondrules, in Meteorites and the Early Solar System II ,
edited by D. S. Lauretta, and H. y. McSween Jr., pp. 431-
459, University of Arizona Press, Tucson.
[20] Nettles, J. W., g. E. Lofgren, W. D. Carlsom, and H. y.
McSween Jr. (2006), Extent of chondrule melting:
Evaluation of experimental textures, nominal grain size, and
convolution index, Meteorit. Planet. Sci. , 41 , 1059-1072.
[21] Nittler, L. R., C. M. o'D. Alexander, R. gallino, P.
Hoppe, A. N. Nguyen, F. J. Stadermann, and E. K. Zinne
(2008), Aluminum-, calcium- and titanium-rich oxide
3. LAP 02240—H CHoNDRiTE iMPACT MELT
[10] Cheek, L. C., and D. A. Kring (2008), Cooling rate deter-
mination for H chondrite impact melt breccia LAP 02240,
Lunar Planet. Sci. Conf. , 39 (1391), 1169.
.
Search WWH ::




Custom Search