Geology Reference
In-Depth Information
stardustin ordinary chondrite meteorites, Astrophys. J. ,
682 , 1450-1478.
[22] Qin, L., R. W. Carlson, and C. M. o'D. Alexander (2011),
Correlated nucleosynthetic isotopic variability in Cr, Sr,
Ba, Sm, Nd and Hf in Murchison and QUE 97008,
Geochim. Cosmochim. Acta 75 , 7806-7828.
[23] Rudraswami, N. g., and J. N. goswami (2007), 26 Al in
chondrules from unequilibrated L chondrites: onset and
duration of chondrule formation in the early solar system,
Earth Planet. Sci. Lett. , 257 , 231-244.
J.  Klein, and R. Middleton (2008), The formation and
chronology of the PAT 91501 impact-melt L chondrite with
vesicle-metal-sulfide assemblages, Geochim. Cosmochim.
Acta , 72 , 2417-2428.
[32] Mittlefehldt, D. W., and M. M. Lindstrom (2001),
Petrology and geochemistry of Patuxent Range 91501, a
clast-poor impact melt from the L-chondrite parent body
and Lewis Cliff 88763, and L7 chondrite, Meteorit. Planet.
Sci. , 36 , 439-457.
[33] Swindle, T. D., D. A. Kring, J. Bond, E. olson, and C.
Jones (2005), Petrological and Ar-Ar studies of shocked
chondrites, Meteorit. Planet. Sci. , 40 , 5295.
5. MAC 87302—L4 CHoNDRiTE
[24] Bischoff, A., E. R. D. Scott, K. Metzler, and C. A.
goodrich (2006), Nature and origins of meteoritic brec-
cias, in Meteorites and the Early Solar System II , edited
by D. S. Lauretta and H. y. McSween Jr., pp. 679-712,
University of Arizona Press, Tucson.
[25] Rubin A. E., g. J. Taylor, E. R. D. Scott, and K. Keil
(1982), Petrologic insights into the fragmentation history
of asteroids, Workshop on Lunar Breccias and Soils and
Their Meteoritic Analogs . LPi Technical Rpt. No. 82-20 ,
pp. 107-110.
[26] Welzenbach, L. C., T. J. McCoy, A. grimberg, and
R. Wieler (2005), Petrology and noble gases of the rego-
lith breccia MAC 87302 and implications for the
classification of Antarctic meteorites, Lunar Planet. Sci.
Conf. 36 (1425).
9. QUE 90201—LL5 CHoNDRiTE STREWNFiELD
[34] Welten, K. C., M. W. Caffee, D. J. Hillegonds, T. J. McCoy,
J. Masarik, K. Nishiizumi (2011), Cosmogenic radionu-
clides in L5 and LL5 chondrites from Queen Alexandra
Range, Antarctica: identification of a large L/LL5 chon-
drite shower with a preatmospheric mass of approximately
50,000 kg, Meteorit. Planet. Sci. , 46 , 177-196.
10. LAP 04757—UNgRoUPED CHoNDRiTE
[35] Troiano, J., D. Rumble, M. L. Rivers, and J. M. Friedrich
(2011), Compositions of three low-Feo ordinary chon-
drites: indications of a common origin with the H chon-
drites, Geochim. Cosmochim. Acta , 75 , 6511-6519.
[36] Russell, S. S., T. J. McCoy, E. Jarosewich, and R. D. Ash
(1990), The Burnwell, Kentucky, Low-Feo chondrite
fall: Description, classification and origin, Meteorit.
Planet. Sci. , 33 , 853-856.
6. ALH 85017—L6 CHoNDRiTE
[27] Cintala, M. J., and F. Hörz (2008), Experimental
impacts into chondritic targets: Part i. Disruption of an
L6 chondrite by multiple impacts, Meteorit. Planet. Sci. ,
43 , 771-803.
[28] Horz, F., Cintala, M. J., See, T. H., and Le, L. (2005),
Shock melting of ordinarychondrite powders and impli-
cations for asteroidal regoliths, Meteorit. Planet. Sci. , 40 ,
1329-1346.
11. QUE 97990—CM2 CHoNDRiTE
[37] Maeda, M., and K. Tomeoka (2008), Chondrules and rims
in the least aqueously altered CM chondrite QUE 97990: is
this meteorite a primary accretionary rock? Meteorit.
Planet. Sci. , 43 (Supp.), 5027.
[38] Howard, K. T., g. K. Benedix, P. A. Bland, and g. Cressey
(2011), Modal mineralogy of CM chondrites by X-ray
diffraction (PSD-XRD): Part 2. Degree, nature and set-
tings of aqueous alteration, Geochim. Cosmochim. Acta ,
75 , 2735-2751.
[39] Rubin, A. E. (2007), Petrography of refractory inclusions
in CM2: 6 QUE 97990 and the origin of melilite-free spinel
inclusions in CM chondrites, Meteorit. Planet. Sci. , 42 ,
1711-1726.
[40] Rubin, A. E., J. M. Trigo-Rodriguez, H. Huber, and J. T.
Wasson (2007), Progressive aqueous alteration of CM
carbonaceous chondrites, Geochim. Cosmochim. Acta , 71 ,
2361-2382.
[41] Trigo-Rodriguez, J. M., A. E. Rubin, and J. T. Wasson
(2006), Non-nebular origin of dark mantles around chon-
drules and inclusions in CM chondrites, Geochim.
Cosmochim. Acta , 70 , 1271-1290.
7. ALH 78003—L6 CHoNDRiTE (WiTH SHoCK
MELT VEiNS)
[29] ohtani, E., y. Kimura, M. Kimura, T. Kubo, and
T.  Takata (2006), High-pressure minerals in shocked
L6-chondrites: Constraints on impact conditions, Shock
Waves , 16 , 45-52.
[30] Miyahara, M., A. El goresy, E. ohtani, M. Kimura, S.
ozawa, T. Nagase, and M. Nishijima (2009), Fractional
crystallization of olivine melt inclusion in shock-induced
chondritic melt vein, Physics of the Earth and Planetary
Interiors , 177 , 116-121.
8. PAT 91501—L CHoNDRiTE iMPACT MELT
[31] Benedix, g. K., R. A. Ketcham, L. Wilson, T. J. McCoy,
D. D. Bogard, D. H. garrison, g. F. Herzog, S. Xue,
Search WWH ::




Custom Search