Information Technology Reference
In-Depth Information
2 σ 2
s 2 ρ + 2 μ s ϕ∂ s φ d s + σ 2 + μ)
R
R
1
a CEV
s 2 ρ + 2 μ 1 s ϕφ d s
ρ,μ (ϕ, φ) :=
0
0
r
r
R
R
s 1 + 2 μ s ϕφ d s
s 2 μ ϕφ d s.
+
(4.28)
0
0
Note that a CEV
ρ, 0
a CEV
ρ
and a CEV
1
a BS . We introduce the spaces W ρ,μ as closures
=
=
of C 0
(G) with respect to the norm
R
s 2 ρ + 2 μ
2 d s,
2
2
s 2 μ
ϕ
ρ,μ :=
|
s ϕ
|
+
|
ϕ
|
(4.29)
0
compare with ( 4.20 ). Note that
ϕ
ρ =
ϕ
ρ, 0 . We now show the analog to Propo-
sition 4.5.1 ,for ρ
∈[
1 / 2 , 1
]
.
Proposition 4.5.3 Assume 0
ρ
1 and select
μ =
ρ< 2 =
0
if 0
1 ,
(4.30)
1
2 <μ< 2
1
ρ
if
2
ρ< 1 .
Assume also r> 0. Then there exist C 1 ,C 2 > 0 such that
ϕ , φ W ρ,μ the follow-
ing holds :
a CEV
|
|≤
C 1
ρ,μ
ρ,μ ,
ρ,μ (ϕ, φ)
ϕ
φ
(4.31)
a CEV
2
ρ,μ (ϕ, ϕ)
C 2
ϕ
ρ,μ .
(4.32)
Proof The continuity ( 4.31 )of a CEV
W ρ,μ ( 0 ,R) follows from the
Cauchy-Schwarz inequality and by Hardy's inequality ( 4.26 ) with ε
in W ρ,μ ( 0 ,R)
×
ρ,μ
=
2
+
μ)
=
1
ρ,μ
s 2 ρ + 2 μ 2 φ 2 d s 1 / 2
R
1
2 σ 2
a CEV
σ 2
|
ρ,μ (ϕ, φ)
|≤
ϕ
ρ,μ
φ
ρ,μ +
+
μ)
ϕ
0
ρ,μ
s 2 + 2 μ 2 ρ φ 2 d s 1 / 2
R
+
r
ϕ
0
σ 2
2 +
rR 1 ρ
2 σ 2
+
μ)
| +
ϕ
ρ,μ
φ
ρ,μ .
|
2 ρ
+
2 μ
1
Let ϕ C 0
(G) . We calculate
2 σ 2 + μ)
R
1
2 σ 2
1
a CEV
s ρ + μ s ϕ
2
s 2 ρ + 2 μ 1 s 2 ) d s
ρ,μ (ϕ, ϕ) =
L 2 (G) +
0
2 r
R
1
s 1 + 2 μ s 2 ) d s
s μ ϕ
2
L 2 (G)
+
r
0
Search WWH ::




Custom Search