Information Technology Reference
In-Depth Information
1 )
R
1
2 σ 2
1
2 σ 2 + μ)( 2 ρ +
s ρ + μ ϕ s
2
s 2 ρ + 2 μ 2 ϕ 2 d s
=
L 2 (G)
2 μ
0
2 μ)
R
1
2 r( 1
s 2 μ ϕ 2 d s
s μ ϕ
2
+
+
+
r
L 2 (G) .
0
Given 1 / 2
ρ< 1, we now choose μ such that
1 / 2
μ< 1 / 2
ρ . Then, 2 ρ
+
2 μ
1 < 0, 1
+
2 μ
0, ρ
+
μ
0, and we get
1
2 σ 2
1
2 min
a CEV
s ρ + μ s ϕ
2
s μ ϕ
2
σ 2 , 2 r
2
ρ,μ (ϕ, ϕ)
L 2 (G) +
r
L 2 (G)
{
}
ϕ
ρ,μ .
By density of C 0
( 0 ,R) in W ρ,μ ,wehaveshown( 4.32 ).
We are now ready to cast Eq. ( 4.19 ) into the abstract parabolic framework. We
choose μ as in ( 4.30 ) and observe that μ
s 2 μ d s)
denotes the weighted L 2 -space corresponding to W ρ,μ , we have the dense inclusions
L 2 ( 0 ,R
0 then. Hence, if
H μ :=
;
H μ =
H μ )
(W ρ,μ ) .
W ρ,μ
(
(4.33)
Denote by (
·
,
·
) μ the inner product in
H μ . The weak formulation then reads:
Find v L 2 (J ; W ρ,μ ) H 1 (J ; H μ ) such that
a CEV
(∂ t v,w) μ +
ρ,μ (v, w)
=
0 ,
w
W ρ,μ , a.e. in J,
(4.34)
v( 0 )
=
g.
Applying Theorem 3.2.2,wehaveshown
Theorem 4.5.4 Let ρ
, and assume that μ satisfies ( 4.30 ). Then , the prob-
lem ( 4.34 ) admits a unique solution .
∈[
0 , 1
]
4.5.2 Local Volatility Models
We replace the constant volatility σ in the Black-Scholes model (1.1) by a deter-
ministic function σ(s) , i.e. the Black-Scholes model is extended to
d S t =
rS t d t
+
σ(S t )S t d W t ,
(4.35)
with r
sσ(s) satisfies
(1.3)-(1.4), such that the SDE ( 4.35 ) admits a unique solution. Thus, the infinitesi-
mal generator
∈ R 0 and σ
: R + → R +
. We assume that the function s
A
of the process S is
1
2 s 2 σ 2 (s)∂ ss f(s)
(
A
f )(s)
=
+
rs∂ s f(s).
Search WWH ::




Custom Search