Information Technology Reference
In-Depth Information
:{
}→
Lemma B.3.19 The map T
u 0 ,f
u(t) which is a solution of PVI ( B.6 ) is
Lipschitz from
H × S( 0 ,T) I( 0 ,T) .
{
}→
Proof Observe that
u 0 ,f
U k is Lipschitz continuous uniformly in k :let
{ u 0 ,f }
be a second set of initial data. Then pick v = u k,m + 1 in ( B.12b ) and also
u k,m we may apply Proposi-
tion B.3.10 which gives for the extensions of u k,m , u k,m as in ( B.55 )
u k,m + 1
v
=
in ( B.12b ). To the difference w
=
u k,m
S( 0 , ) .
By ( B.68 ), an analogous estimate uniform in k holds also true for the linear exten-
sions U k (t) , U k (t) .
C
f k (t)
u k (t
u k, 1 H +
u k (t
+
k)
+
k)
I( 0 ,T + k)
u k, 1
f k (t)
References
1. Y. Achdou and O. Pironneau. Computational methods for option pricing , volume 30 of
Frontiers in Applied Mathematics . Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 2005.
2. Y. Achdou and N. Tchou. Variational analysis for the Black and Scholes equation with
stochastic volatility. M2AN Math. Model. Numer. Anal. , 36 (3):373-395, 2002.
3. D. Applebaum. Lévy processes and stochastic calculus , volume 93 of Cambridge Studies in
Advanced Mathematics . Cambridge University Press, Cambridge, 2004.
4. L. Bachelier. Théorie de la spéculation. Ann. Sci. Éc. Norm. Super. , 17 :21-86, 1900.
5. C. Baiocchi. Discretization of evolution variational inequalities. In Partial differential equa-
tions and the calculus of variations, Vol. I , volume 1 of Progr. Nonlinear Differential Equa-
tions Appl. , pages 59-92. Birkhäuser, Boston, 1989.
6. C.A. Ball and A. Roma. Stochastic volatility option pricing. J. Financ. Quant. Anal. ,
29 (4):589-607, 1994.
7. O. Barndorff-Nielsen and S.Z. Levendorskii. Feller processes of normal inverse Gaussian
type. Quant. Finance , 1 :318-331, 2001.
8. O.E. Barndorff-Nielsen. Normal inverse Gaussian processes and the modelling of stock re-
turns. Research report 300, Department of Theoretical Statistics, Aarhus University, 1995.
9. O.E. Barndorff-Nielsen, E. Nicolato, and N. Shephard. Some recent developments in stochas-
tic volatility modelling. Quant. Finance , 2 (1):11-23, 2002. Special issue on volatility mod-
elling.
10. O.E. Barndorff-Nielsen and N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-based mod-
els and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol. ,
63 (2):167-241, 2001.
11. G. Barone-Adesi. The saga of the American put. J. Bank. Finance , 29 (11):2909-2918, 2005.
12. G. Barone-Adesi and R.E. Whaley. Efficient analytic approximation of American option
values. J. Finance , 42 (2):301-320, 1987.
13. D.S. Bates. Jumps stochastic volatility: the exchange rate process implicit in Deutsche Mark
options. Rev. Finance , 9 (1):69-107, 1996.
14. D.S. Bates. Post-'87 crash fears in the S&P 500 futures option market. J. Econ. , 94 (1-2):181-
238, 2000.
15. A. Bensoussan and J.-L. Lions. Applications of variational inequalities in stochastic con-
trol , volume 12 of Studies in Mathematics and Its Applications . North-Holland, Amsterdam,
1982.
16. F.E. Benth and M. Groth. The minimal entropy martingale measure and numerical option
pricing for the Barndorff-Nielsen-Shephard stochastic volatility model. Stoch. Anal. Appl. ,
27 (5):875-896, 2009.
Search WWH ::




Custom Search