Chemistry Reference
In-Depth Information
66. Nagle, J.K. (1990). Atomic polarizability
and electronegativity. J. Am. Chem. Soc. ,
112 , 4741-4747.
67. Ghosh, D.C. and Gupta, K. (2006). A new
scale of electronegativity of 54 elements of
periodic table based on polarizability of at-
oms. J. Theor. Comput. Chem ., 5 , 895-911.
68. Pearson, R.G. (1963). Hard and soft acids
and bases. J. Am. Chem. Soc. , 85 , 3533-
3539.
69. Parr, R.G. and Pearson, R.G. (1983). Abso-
lute hardness: Companion parameter to ab-
solute electronegativity. J. Am. Chem. Soc .,
105 , 7512-7516.
70. Pearson, R.G. (1985). Absolute electronega-
tivity and absolute hardness of Lewis acids
and bases. J. Am. Chem. Soc. , 107 , 6801-
6806.
71. Ahrland, S., Chatt, J., and Davies, N.R.
(1958). The relative affinities of ligand at-
oms for acceptor molecules and ions. Q.
Reu. Chem. Sot. , 12 , 265-276.
72. Chatt, J. (1958). The stabilisation of low
valent states of the transition metals: Intro-
ductory lecture. J. Inorg. Nurl. Chem. , 8 ,
515-531.
73. Ahrland, S. (1968). Thermodynamics of
complex formation between hard and soft
acceptors and donors. Structure and Bond-
ing , 5 , 118-149.
74. Baird, N.C. and Whitehead, M.A. (1964).
Ionic character. Theor. Chim. Acta , 2 , 259-
264.
75. Orsky, A.R. and Whitehead, M.A. (1987).
Electronegativity in density functional the-
ory: Diatomic bond energies and hardness
parameters. Can. J. Chem ., 65 , 1970-1979.
76. Garner-O' Neale, L.D., Bonamy, A.F.,
Meek, T.L., and Patrick, B.G. (2003). Cal-
culating group electronegativities using the
revised Lewis-Langmuir equation. J. Mol.
Struct . (THEOCHEM), 639 , 151-156.
77. Mullay, J. (1984). Atomic and group elec-
tronegativities. J. Am. Chem. Soc. , 106 ,
5842-5847.
78. KeYan, L. and DongFeng, X. (2009). New
development of concept of electronegativ-
ity. Chinese Sci. Bull. , 54 , 328-334.
79. Spieseke, H. and Schneider, W.G. (1961).
Effect of electronegativity and magnetic
anisotropy of substituents on C13 and H1
chemical shifts in CH 3 X and CH 3 CH 2 X
compounds. J. Chem. Phys ., 35 , 722-731.
80. Clasen, C.A. and Good, M.L. (1970). In-
terpretation of the Moessbauer spectra of
mixed-hexahalo complexes of tin (IV). In-
org. Chem ., 9 , 817-820.
81. Ichikawa, S. (1989). High-Tc superconduc-
tors and weighted harmonic mean electro-
negativities. J. Phys. Chem ., 93 , 7302-7311.
82. Devautour, S., Giuntini, J.C., Henn, F.,
Douillard, J.M., Zanchetta, J.V., and Van-
derschueren, J. (1999). Application of the
Electronegativity Equalization Method to
the Interpretation of TSDC Results: Case
of a Mordenite Exchanged by Na + and Li +
Cations. J. Phys. Chem. B , 103 , 3275-3281.
83. Schaeffera, J.K., Gilmera, D.C., Capassoa,
C., Kalpata, S., Taylora, B., Raymonda,
M.V., Triyosoa, D., Hegdea, R., Samave-
dama, S.B., and White, Jr, B.E. (2007).
Application of group electronegativity
concepts to the effective work functions of
metal gate electrodes on high-[kappa] gate
oxides. Microelectronic Engineering , 84 ,
2196-2203.
84. Baeten, A. and Geerlings, P. (1999). The
use of the electronegativity equalization
principle to study charge distributions in
enzymes: Application to dipeptides. J. Mol.
Struct. (THEOCHEM), 465 , 203-207.
85. Ramsden, C.A. (2004). The influence of
electronegativity on triangular three-centre
two-electron bonds: The relative stability
of carbonium ions, [pi]-complex chemistry
and the-2h [beta] effect. Tetrahedron , 60 ,
3293-3309.
86. Reddy, R.R., Gopal, K.R., Narasimhulu,
K., Reddy, L.S.S., Kumar, K.R., Reddy,
C.V.K., and Ahmed, S.N. (2008). Correla-
tion between optical electronegativity and
refractive index of ternary chalcopyrites,
semiconductors, insulators, oxides and al-
kali halides. Opt. Mat. , 31 , 209-212.
87. Douillard, J.M., Salles, F., Henry, M., Mal-
andrini, H., and Clauss, F. (2007). Surface
energy of talc and chlorite: Comparison
between electronegativity calculation and
immersion results. J. Col. Int. Sci. , 305 ,
352-360.
 
Search WWH ::




Custom Search