Chemistry Reference
In-Depth Information
Part-1, Evaluation of internuclear bond
distance of some heteronuclear diatomics.
Int. J. Quantum Chem ., DOI: 10.1002/
qua.22500, [Early View].
42. Ghosh, D.C. and Islam, N. (2010). Determi-
nation of some descriptors of the real world
working on the fundamental identity of the
basic concept and the origin of the electro-
negativity and the global hardness of atoms.
Part-2. Computation of the dipole moments
of some heteronuclear diatomics. Int. J.
Quantum Chem. , DOI: 10.1002/qua.22651,
[Early View].
43. Ghosh, D.C. and Islam, N. (2010). Charge
transfer associated with the physical process
of hardness equalization and the chemical
event of the molecule formation and the di-
pole moments. Int. J. Quantum Chem. , DOI:
10.1002/qua.22653, [Early View].
44. Kim, K. (1987). Electronegativity equal-
ization and atomic polar tensor in diatomic
molecule. Bull. Korean Chem. Soc. , 8 , 432-
434.
45. Badger, R.M. (1934). A relation between
internuclear distances and bond force con-
stants. J. Chem. Phys. , 2 , 128-131.
46. Remick, A.E. (1943). Electronic interpre-
tation of organic chemistry, John Wiley &
Sons, Inc., NY.
47. Gordy, W.A. (1946). Relation between bond
force constants, bond orders, bond lengths,
and the electronegativities of the bonded at-
oms. J. Chem. Phys. , 14 , 305-320.
48. Bratsch, S.G. (1988). Revised Mulliken
electronegativities: I. Calculation and con-
version to Pauling units. J. Chem. Edu. , 65 ,
34-41.
49. Fineman, M.A. (1958). Correlation of bond
dissociation energies of polyatomic mol-
ecules using Pauling's electronegativity
concept. J. Phys. Chem ., 62 , 947-951.
50. Szwarc, M., Ghosh, B.N., and Sehon, A.H.
(1950). The C-Br bond dissociation energy
in benzyl bromide and allyl bromide. J.
Chem. Phys. , 18 , 1142-1149.
51. Field, F.H. and Franklin, J.L. (1957). Elec-
tron impact phenomena and the proper-
ties of gaseous ions . Academic Press, New
York, NY.
52. Smith, D.W. (1987). An acidity scale for bi-
nary oxides. J. Chem. Edu ., 64 , 480-482.
53. Brown, I.D. and Skowron, A. (1990). Elec-
tronegativity and Lewis acid strength. J.
Am. Chem. Soc. , 112 , 3401-3403.
54. Gordy, W. and Orville Thomas, W.J. (1956).
Electronegativities of the Elements. J.
Chem. Phys , 24 , 439-444.
55. Conway, B.E. and Bockris, J.O'M, (1957).
Electrolytic hydrogen evolution kinetics
and its relation to the electronic and adsorp-
tive properties of the metal. J. Chem. Phys. ,
26 , 532-541.
56. Miedema, A.R., de Boer, F.R., and de Cha-
tel, P.F. (1973). Empirical description of the
role of electronegativity in alloy formation.
J. Phys. F: Metal Phys. , 3 , 1558-1562.
57. Trasatti, S. (1972). Electronegativity, work
function, and heat of adsorption of hydro-
gen on metals. J. Chem. Soc. , Faraday
Trans. , 168 , 229-236.
58. Michaelson, H.B. (1978). Relation between
an atomic electronegativity scale and the
work function. IBM J. Res. Develop. , 22 ,
72-80.
59. Mulliken, R.S. (1934). A new electroaffin-
ity scale; Together with data on valence
states and on valence ionization potentials
and electron affinities. J. Chem. Phys ., 2 ,
782-791.
60. Ghosh, D.C. (2005). A new scale of electro-
negativity based on absolute radii of atoms.
J. Theoret. Comput. Chem . 4 , 21-33.
61. Mulliken, R.S. (1952). Molecular com-
pounds and their spectra. II. J. Am. Chem.
Soc ., 74 , 811-824.
62. Ghosh, D.C. and Islam, N. (2011). Whether
electronegativity and hardness are manifest
two different descriptors of the one and the
same fundamental property of atoms - A
quest. Int. J. Quantum Chem. , 111 , 40-51.
63. Putz, M.V. (2008). Absolute and chemical
electronegativity and hardness . Nova Sci-
ence Publishers, New York.
64. Ayers, P.W. (2007). The physical basis of
the hard/soft acid/base principle. Faraday
Discuss , 135 , 161-190.
65. Li, K., Wang, X., Zhang, F., and Xue, D.
(2008). Electronegativity identification of
novel super hard materials. Phys. Rev. Lett. ,
100 , 235504-235507.
 
Search WWH ::




Custom Search