Biomedical Engineering Reference
In-Depth Information
Jones, A. C., Arns, C. H., Hutmacher, D. W., Milthorpe, B. K., Sheppard, A. P., and
Knackstedt, M. A. 2009. The correlation of pore morphology, interconnec-
tivity and physical properties of 3D ceramics scaffolds with bone ingrowth.
Biomaterials 30:1440-51.
Kalita, S. J., Bose, S., Hosick, H. L., and Bandyopadhyay, A. 2003. Development of
controlled porosity polymer-ceramic composite scaffolds via fused deposition
modeling. Mater Sci Eng C 23:611-620.
Karageorgiou, V., and Kaplan, D. 2005. Porosity of 3D biomaterial scaffolds and
osteogenesis. Biomaterials 26:5474-91.
Keating, J. F ., and McQueen, M. M . 2001 . Substitutes for autologous bone graft in
orthopaedic trauma . J Bone Joint Surg Br 83 : 3-8 .
Khairoun, I., Boltong, M. G., Driessens, F. C., and Planell, J. A. 1997. Effect of calcium
carbonate on clinical compliance of apatitic calcium phosphate bone cement. J
Biomed Mater Res 38:356-60.
Khalyfa, A., Vogt, S., Weisser, J., et al. 2007. Development of a new calcium phosphate
powder-binder system for the 3D printing of patient specific implants. J Mater
Sci Mater Med 18:909-16.
Kim, G. H., and Son, J. G. 2009. 3D polycaprolactone (PCL) scaffold with hierarchical
structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter. Appl
Phys A 94:781-5.
Landers, R., Hübner, U., Schmelzeisen, R., and Mülhaupt, R. 2002. Rapid prototyping
of scaffolds derived from thermoreversible hydrogels and tailored for applica-
tions in tissue engineering. Biomaterials 23:4437-47.
Leong, K. F., Chua, C. K., Sudarmadji, N., and Yeong, W. Y. 2008. Engineering func-
tionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140-52.
Lode, A., Meissner, K., Luo, Y., et al. Forthcoming. Fabrication of porous scaffolds by
three-dimensional plotting of a pasty calcium phosphate bone cement under
mild conditions. J Tissue Eng Regen Med . DOI 10.1002/term.1563.
Lόpez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Sakamoto, Y., Terasaki, O., and
Vallet-Regí, M. 2006. Ordered mesoporous bioactive glasses for bone tissue
regeneration. Chem Mater 18:3137-44.
Luo, Y., Lode, A., and Gelinsky, M. Forthcoming. Direct plotting of three-dimensional
hollow fiber scaffolds based on concentrated alginate pastes for tissue engineer-
ing. Adv Healthcare Mater . DOI 10.1002/adhm.201200303.
Luo, Y., Wu, C., Lode, A., and Gelinsky, M. Forthcoming. Hierarchical mesoporous
bioactive glass/alginate composite scaffolds fabricated by three-dimensional
plotting for bone tissue engineering. Biofabrication. 5:015005.
Maher, P. S., Keatch, R. P., Donnelly, K., and Mackay, R. E. 2009. Construction of 3D bio-
logical matrices using rapid prototyping technology. Rapid Prototyp J 15:204-10.
Martins, A., Chung, S., Pedro, A. J., Sousa, R. A., Marques, A. P., Reis, R. L., and Neves,
N. M. 2009. Hierarchical starch-based fibrous scaffold for bone tissue engineer-
ing applications. J Tissue Eng Regen Med 3:37-42.
Mertz, W. 1981. The essential trace elements. Science 213:1332-8.
Miranda, P., Pajares, A., Saiz, E., Tomsia, A. P., and Guiberteau, F. 2007. Fracture
modes under uniaxial compression in hydroxyapatite scaffolds fabricated by
robocasting. J Biomed Mater Res A 83:646-55.
Miranda, P., Pajares, A., Saiz, E., Tomsia, A. P., and Guiberteau, F. 2008. Mechanical
properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed
Mater Res A 85:218-27.
Search WWH ::




Custom Search