Biomedical Engineering Reference
In-Depth Information
Miranda, P., Saiz, E., Gryn, K., and Tomsia, A. P. 2006. Sintering and robocasting of
β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater
2:457-66.
Mironov, V., Visconti, R. P., Kasyanov, V., Forgacs, G., Drake, C. J., and Markwald,
R. R. 2009. Organ printing: Tissue spheroids as building blocks. Biomaterials
30:2164-74.
Murphy, C. M., Haugh, M. G., and O'Brien, F. J. 2010. The effect of mean pore size
on cell attachment, proliferation and migration in collagen-glycosaminoglycan
scaffolds for bone tissue engineering. Biomaterials 31:461-6.
Nemzek, J. A., Arnoczky, S. P., and Swenson, C. L. 1994. Retrovinal transmission by
the transplantation of connective-tissue allografts. An experimental study. J
Bone Joint Surg Br 76:1036-41.
O'Brien, F. J. 2011. Biomaterials and scaffolds for tissue engineering. Mater Today
14:88-95.
Oliveira, A. L., Costa, S. A., Sousa, R. A., and Reis, R. L. 2009. Nucleation and growth
of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds:
Effect of static and dynamic coating conditions. Acta Biomat 5:1626-38.
Paul, J., Stagstetter, A., Kriner, M., et al. 2009. Donor-site morbidity after osteochondral
autologous transplantation for lesions of the talus. J Bone Joint Surg Br 91:1683 -8.
Pfister, A., Landers, R., Laib, A., Huebner, U., Schmelzeisen, R., and Muelhaupt, R.
2004. Biofunctional rapid prototyping for tissue-engineering applications: 3D
bioplotting versus 3D printing. J Polym Sci Part A: Polym Chem 42:624-38.
Pietak, A. M., Reid, J. W., Stott, M. J., and Sayer, M. 2007. Silicon substitution in the
calcium phosphate bioceramics. Biomaterials 28:4023-32.
Sachs, E., Cima, M., Cornie, J., et al. 1993. Three-dimensional printing: The physics and
implications of additive manufacturing. CIRP Ann Manufac Technol 42:257-60.
Schroeder, J. E., and Mosheiff, R. 2011. Tissue engineering approaches for bone repair:
Concepts and evidence. Injury 42:609-13.
Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C. 2005. Three-dimensional print-
ing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res
B 74:782-8.
Sobral, J. M., Caridade, S. G., Sousa, R. A., Mano, J. F., and Reis, R. L. 2011. Three-
dimensional plotted scaffolds with controlled pore size gradients: Effect of
scaffold geometry on mechanical performance and cell seeding efficiency. Acta
Biomater 7:1009-18.
Srouji, S., Kizhner, T., Suss-Tobi, E., Livne, E., and Zussman, E. 2008. 3-D Nanofibrous
electrospun multilayered construct is an alternative ECM mimicking scaffold. J
Mater Sci: Mater Med 19:1249-55.
Tsuruga, E., Takita, H., Itoh, H., Wakisaka, Y., and Kuboki, Y. 1997. Pore size of porous
hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J
Biochem 121:317-24.
Wu, C., Fan, W., Zhou, Y., et al. 2012. 3D-Printing of highly uniform β-CaSiO3 ceramic
scaffolds: Preparation, characterization and in vivo osteogenesis. J Mater Chem
22:12288-95.
Wu, C., Luo, Y., Cuniberti, G., Xiao, Y., and Gelinsky, M. 2011. Three-dimensional
printing of hierarchical and tough mesoporous bioactive glass scaffolds with a
controllable pore architecture, excellent mechanical strength and mineralization
ability. Acta Biomater 7:2644-50.
Search WWH ::




Custom Search