Agriculture Reference
In-Depth Information
Chen G, Zhou M, Chen S, Lv G, Yao J (2009) Nanolayer biofilm coated on magnetic nanoparticles
by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimi-
crobial peptide. Nanotechnology 20:465706
Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Broad
spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9:2735-2746
Clark B, Bryson R, Tongu¸ L, Kelly C, Jellis G (2012) The encyclopedia of cereal diseases.
HGCA/BASF. Available at www.hgca.com
Coles D, Frewer LJ (2013) Nanotechnology applied to European food production - a review of
ethical and regulatory issues. Trends Food Sci Technol 34:32-43
Czajkowski R, P ´ rombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and
tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol
60:999-1013
Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in
water hygiene management. Langmuir 25:8192-8199
Davidson PM, Harrison MA (2002) Resistance and adaptation to food antimicrobials, sanitizers,
and other process controls. Food Technol 56:69-78
Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the
morphology of electrospun nanofibers and textiles. Polymer 42:261-272
Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the
application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv
29:142-155
Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes
suspended in different surfactants. J Nanotechnol 2012:928924
Dur´n N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver
nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J
Biomed Nanotechnol 3:203-208
Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle
coatings for medical instruments. ACS Appl Mater Interfaces 1:1553-1560
Faraji AM, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950-
2962
Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic
modalities. Adv Drug Deliv Rev 58:1456-1459
Fatmi M, Schaad NW (2002) Survival of Clavibacter michiganensis ssp. michiganensis in infected
tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathol
51:149-154
Gao W, Xiao Z, Radovic-Moreno A, Shi J, Langer R, Farokhzad OC (2010) Progress in siRNA
delivery using multifunctional nanoparticles. Methods Mol Biol 629:53-67
Gavrovic-Jankulovic M, Prodanovic R (2011) Drug delivery: plant lectins as bioadhesive drug
delivery systems. J Biomater Nanobiotechnol 2:614-621
Gerez CL, Torres MJ, Font de Valdez G, Roll ´ n G (2013) Control of spoilage fungi by lactic acid
bacteria. Biol Control 64:231-237
Gomes C, Moreira RG, Castell-Perez E (2011) Poly( DL -lactide-co-glycolide) (PLGA)
nanoparticles with entrapped trans -cinnamaldehyde and eugenol for antimicrobial delivery
applications. J Food Sci 76:S16-S24
Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid
formulations of nanoparticles against
insect pests and pathogens. Thin Solid Films
519:1252-1257
Gram L, Ravn L, Rasch M, Bruhn JB, Christense AB, Givskov M (2002) Food spoilage interac-
tions between food spoilage bacteria. Int J Food Microbiol 78:79-97
Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance
antimicrobial activities. Nano Lett 3:1261-1263
Gupta AK, Cooper EA (2008) Update in antifungal therapy of dermatophytosis. Mycopathologia
166:353-367
Search WWH ::




Custom Search