Biomedical Engineering Reference
In-Depth Information
for every mole of A being consumed, 1 mol of B is also consumed (both desired and side
reactions). This leads to C A ¼
C B everywhere in the reactor. Thus,
f Ae
Z
s R = A d f A
f Ae
Z
S R = A ¼ D F A j due to the formation of R
1
f Ae
k 1 C A
k 1 C A þ k 2 C 1=2
0
¼
f Ae 0 ¼
d f A
DF A j total
(E5-7.4)
B
0
f Ae
Z
1
f Ae
k 1
k 1 þ k 2 C 1=2
¼
d f A
A
0
At this point, we can work either with concentration C A or the conversion f A . The flow rate
Q remains constant in the reactor. Let us use the concentration for this case:
QC A 0 QC A
QC A 0
C A 0 C A
C A 0 0
f A ¼
¼
d f A ¼
d C A =C A 0
(E5-7.5)
which leads to
C 1=2
Ae
Z
C Ae
Z
1
C A 0 f Ae
k 1
k 1 þ k 2 C 1=2
1
C A 0 f Ae
k 1
k 1 þ k 2 x
d x 2
S R = A ¼
d C A
¼
A
C A0
C 1=2
A 0
C 1=2
Ae
C 1=2
Ae
Z
Z
1
d x
1
C A 0 f Ae
2k 1 x
k 1 þ k 2 x
2k 1
k 2 C A 0 f Ae
k 1
k 1 þ k 2 x
¼
d x
¼
(E5-7.6)
C 1=2
A0
C 1=2
A 0
x
C 1=2
Ae
2k 1
k 2 C A 0 f Ae
k 1
k 2
¼
lnðk 1 þ k 2
C 1=2
A0
"
#
ln k 1 þ k 2 C 1=2
2k 1
k 2 C A 0 f Ae
k 1
k 2
C 1=2
A0 C 1=2
A0
k 1 þ k 2 C 1=2
¼
Ae
Ae
Substituting
f Ae ¼
0.9,
C A0 ¼
10 mol/L,
C Ae ¼
(1
0.9)
10 mol/L
¼
1mol/L,
0.1 mol 1/2
$ L 1/2
$ min 1 and k 2 ¼
k 1 ¼
0.2/min into above, we obtain
"
C 1=2
#
ln k 1 þ k 2 C 1=2
2k 1
k 2 C A 0 f Ae
k 1
k 2
A 0 C 1=2
A 0
k 1 þ k 2 C 1=2
S R = A ¼
Ae
Ae
(E5-7.7)
9 3:162278 1 0:44631 ¼ 0:19066
1
¼
Search WWH ::




Custom Search