Geography Reference
In-Depth Information
ellipsoidal longitude Λ ( Λ, Φ ; c 3 ,c 4 ) and latitude Φ ( Λ, Φ ; c 3 ,c 4 ) of the right biaxial ellipsoid are
in consequence related to surface normal ellipsoidal longitude/latitude
{
Λ, Φ
}
of the left biax-
ial ellipsoid, particularly postulating d Λ / d Λ = c 3 , d Φ / d Φ = c 4 (1
E 2 sin 2 Φ ) 2 cos Φ/ [(1
E 2 sin 2 Φ ) 2 cos Φ ], where the scale constants
are chosen in such a way to guaran-
tee an areomorphism by c 1 c 2 c 3 c 4 = 1. The final form of the mapping equations generating the
ellipsoidal Hammer projection is achieved by the inversion of an odd homogeneous polynomial
equation for sin Φ outlined in Sect. H-5 .
{
c 1 ,c 2 ,c 3 ,c 4
}
H-21 The Equiareal Mapping from a Left Biaxial Ellipsoid to a Right
Biaxial Ellipsoid
A 1 ,A 2 which is
outlined by Box H.1 is of preparatory nature for the following section. We assume that pointwise
the surface normal ellipsoidal longitude {Λ, Λ } of types left and right coincide, but the func-
tion which relates surface normal ellipsoidal latitude from the left to the right, namely Φ ( Φ ), is
unknown. Based upon the structure of the mapping equations ( H.41 ), the postulate of an equiareal
mapping ( H.23 ), in particular det [C l G l ] = 1, leads to the left Cauchy-Green deformation ten-
sor ( H.42 ) with respect to the left metric tensor ( H.43 )of
A 1 ,A 2
The equiareal mapping of a left biaxial ellipsoid
E
to a right biaxial ellipsoid
E
. The equivalence of det [C l G l ]
with det[C l ]=det[G l ] leads to the differential equation ( H.44 ) for the unknown function Φ ( Φ ).
For the identities of ( H.45 )and( H.46 ), we have used only the positive preserving diffeomorphism
[d Λ , d Φ ] T =J[d Λ, d Φ ] T ,
E
A 1 ,A 2
> 0, namely a positive determinant of the Jacobi matrix J. Left
and right integration of ( H.46 ) with respect to the condition Φ ( Φ = 0) = 0 leads finally to the
mapping equations in ( H.47 ) of equiareal type from a left biaxial ellipsoid
|
J
|
2
A 1 ,A 2
E
to a right biaxial
A 1 ∗,A 2
ellipsoid
E
.
Box H.1 (Equiareal mapping from a left biaxial ellipsoid to a right biaxial ellipsoid).
Λ = Λ ( Λ ) , Φ = Φ ( Φ ) ,
(H.41)
= A 1 cos 2 Φ
,
C l = G 11 Λ Λ
1 −E sin 2 Φ Λ Λ
0
0
(H.42)
G 22 Φ Φ
A 1
(1 −E ) 2
0
(1 −E sin 2 Φ ) 3 Φ Φ
0
G l = A 1 cos 2 Φ
,
0
1 −E 2 sin 2 Φ
(H.43)
A 1 (1 −E 2 ) 2
(1 −E 2 sin 2 Φ ) 3
0
A 1 (1
E 2
) 2 cos 2 Φ
Φ Φ = A 1 (1
E 2 ) 2 cos 2 Φ
det [C l ]=det[G l ]
,
(H.44)
sin 2 Φ ) 4
E 2 sin 2 Φ ) 4
(1
E 2
(1
sin 2 Φ ) 2
Φ Φ = d Φ
d Φ = (1 − E 2
cos Φ
cos Φ
A 1 (1 E 2 )
A 1 (1
) ,
(H.45)
E 2 sin 2 Φ ) 2
(1
E 2
) ar tanh( E sin Φ )
2 E
=
sin Φ
A 1 (1 − E 2
+
sin 2 Φ )
2(1
E 2
= A 1 (1 − E 2 ) ar tanh( E sin Φ )
.
sin Φ
+
(H.46)
E 2 sin 2 Φ )
2 E
2(1
 
Search WWH ::




Custom Search