Geography Reference
In-Depth Information
r = A 1 sin 2 Λ cos 2 Φ +(1
E 2 )sin 2 Φ ) 3 / 4 t 1 + t 2 + t 3 + t 4
E 2 ) 2 sin 2 Φ
(H.37)
(sin 2 Λ cos 2 Φ +(1
(in polar coordinates) ,
subject to
sin 2 Λ cos 2 Φ +(1 − E 2 )sin 2 Φ ,
cos Λ cos Φ
1
t 1 =
E 2 sin 2 Φ
1 cos 2 Λ cos 2 Φ
E sin Φ
E cos Λ sin Φ cos Φ
t 2 =
(1
cos 2 Λ cos 2 Φ ) ,
arcsin
(H.38)
E 2 sin 2 Φ )(1
t 3 = sin 2 Λ cos 2 Φ +(1
E 2 )sin Φ ,
t 4 = 1 cos 2 Λ cos 2 Φ
E sin Φ
1
arcsin
,
E sin Φ
cos 2 Λ cos 2 Φ
(ii)
sin Λ
sin 2 Λ +(1 − E 2 ) 2 tan 2 Φ
E 2 )tan Φ
sin 2 Λ +(1 − E 2 ) 2 tan 2 Φ
(1
cos α =
, sin α =
(H.39)
(in Cartesian coordinates x = r cos α and y = r sin α ) ,
(iii)
E→ 0 r ( E )= A 1 2 1
E→ 0 α ( E ) = arctan tan Φ
α = lim
sin Λ , r = lim
cos Λ cos Φ
(H.40)
(if E =0) .
End of Corollary.
H-2 The Ellipsoidal Hammer Projection
The second constituent of the Hammer projection is a proper change of scale of the transverse
equiareal projection which conserves the local area.
Section H-21.
As a starting point, we set up in Sect. H-21 the equations of an equiareal mapping from a left
biaxial ellipsoid to a right biaxial ellipsoid in order to be motivated for the structure of a change
of scale.
Section H-22.
Section H-22 introduces in detail the rescaled equations x = c 1 x ( Λ ) y = c 2 y ( Λ )ofa
transverse equiareal projection with respect to a right biaxial ellipsoid
2
A 1 ,A 2
E
. Surface normal
 
Search WWH ::




Custom Search