Geography Reference
In-Depth Information
A 1 1
A 1 1
E 2
E 2
X =
cos B cos A , Y =
cos B cos A ,
1
1
(H.10)
E 2 cos 2 A
E 2 cos 2 A
Z = A 1 sin B ,
X = A 1 cos Φ cos Λ
, Y = A 1 cos Φ sin Λ
, Z = A 1 (1 E 2 )sin Φ
1
1
1
.
(H.11)
E 2 sin 2 Φ
E 2 sin 2 Φ
E 2 sin 2 Φ
The third equation of ( H.10 ) as well as the second equation of ( H.10 ) divided by the first equation
of ( H.10 ) subject to ( H.8 ) lead to the transformation
Λ }→{
A ,B }
, namely tan A =
{
Y /X ,sin B = Z /A 1 and
E 2 )tan Φ
cos( Λ − Ω )
, sin B = cos Φ sin( Λ
tan A =
(1
Ω )
1 − E 2 sin 2 Φ
.
(H.12)
Later on, we have to use sin A , cos A , cos B , which is derived from ( H.12 ) to coincide with
1
1+tan 2 A
cos A =
,
(H.13)
tan A
sin A =
1+tan 2 A
,
cos( Λ
Ω )
cos A =
cos 2 ( Λ
,
(H.14)
E 2 ) 2 tan 2 Φ
Ω )+(1
E 2 )tan Φ
(1
sin A =
cos 2 ( Λ
,
E 2 ) 2 tan 2 Φ
Ω )+(1
cos B = 1
E 2 sin 2 Φ
cos 2 Φ sin 2 ( Λ
Ω )
1 − E 2 sin 2 Φ
.
(H.15)
For the special choice Ω = 270 , the transformation }→{A ,B } is given by
E 2 )tan Φ
sin Λ
cos Φ cos Λ
1 − E 2 sin 2 Φ
tan A = (1
, sin B =
.
(H.16)
H-12 The Equiareal Mapping of the Biaxial Ellipsoid onto
a Transverse Tangent Plane
A 1 ,A 2
onto the transverse
tangent plane normal to E 3 which is parameterized either by Cartesian coordinates
We are going to construct the equiareal mapping of the biaxial ellipsoid
E
x ,y }
{
or by
related by x = r cos α,y = r sin α . The mapping
A ,B }
polar coordinates
{
α,r
}
{
is transverse
α = A + π,r = r ( A ,B )
azimuthal by means of
{
}
.namely
 
Search WWH ::




Custom Search