Geography Reference
In-Depth Information
x =
r ( A ,B )cos A ,
(H.17)
y =
r ( A ,B )sin A .
Meta-longitude A coincides with the polar coordinate α , the western azimuth in case of Ω = 270 ,
in the transverse plane; the radius r is an unknown function r ( A ,B ) of meta-longitude A and
meta-latitude B which has to be determined. In order to derive the unknown function r ( A ,B ),
we calculate the left Cauchy-Green deformation tensor C l := {c KL } , i.e. the infinitesimal distance
between two points in the plane covered by {α,r} ,namely
d s 2 = g kl d u k d u l = g 11 d α 2 + g 22 d r 2 = r 2 d α 2 +d r 2 ,
(H.18)
∂u k
∂U K
d u l
d s 2 = g kl
∂U L d U K d U L = c KL d U K d U L
= c 11 d A 2 +2 c 12 d A d B + c 22 d B 2 ,
(H.19)
c 11 = r 2 ∂α
∂A
2
+ ∂r
∂A
2
,
c 12 = r 2 ∂α
∂A
∂α
∂B +
∂r
∂A
∂r
∂B ,
(H.20)
c 22 = r 2 ∂α
∂B
2
+ ∂r
∂B
2
,
∂α
∂A =1 ,
∂r
∂A = r A ,
(H.21)
∂α
∂B
∂r
∂B
=0 ,
= r B ,
= r 2 + r A
.
r A r B
C l :=
{
c KL }
(H.22)
r A r B
r B
Corollary H.1 (Equiareal mapping of the biaxial ellipsoid onto the transverse tangent plane).
The mapping of the biaxial ellipsoid onto the transverse tangent plane normal to E 3 is equiareal
if ( H.23 )and( H.24 ) hold with respect to the left Cauchy-Green deformation tensor C l =
{
c KL }
2
A 1 ,A 2
of type ( H.22 ) and the left metric tensor G l =
{
G KL }
of
E
.
det [C l G l ]=1 ,
(H.23)
det[ G KL ] .
rr B = 1
2 r B =
(H.24)
End of Corollary.
For the proof of ( H.23 ), we refer to Grafarend ( 1995 ).
 
Search WWH ::




Custom Search