Geography Reference
In-Depth Information
1
E 2 sin 2 Φ
cos Φ
E 2 sin 2 Φ ) 3 / 2
A 1 (1
= (1
f ( Φ )
Λ 1 = Λ 2
E 2 )
(14.16)
E 2 sin 2 Φ d Φ ⇒ f ( Φ )= A 1 Φ
d f = A 1 (1
E 2 )
cos Φ
1
d Φ
cos Φ
1
E 2
E 2 sin 2 Φ .
1
1
0
The integral is called “isometric latitude”. Applying “integration-by-parts”, we obtain the follow-
ing set of formulae.
f ( Φ )= A 1 Φ
0
d Φ 1
E cos Φ
1+ E sin Φ
,
E cos Φ
1 − E sin Φ
E
2
cos Φ
+
(14.17)
f ( Φ )= A 1 ln tan π
4 + Φ
A 1 E
2
ln 1+ E sin Φ
1
E sin Φ .
(14.18)
2
At this point, let us present the mapping equations as well as the principal stretches. They are
easily computed as follows.
=
,
x
y
A 1 Λ
A 1 ln tan 4 + 2 1 E sin Φ
1+ E sin Φ E/ 2
(14.19)
Λ 1 = Λ 2 = 1
E 2 sin 2 Φ
cos Φ
.
(14.20)
14-23 Special Normal Cylindric Mapping (Normal Equiareal,
Equidistant: Equator)
Second, let us here apply the postulate of equiareal mapping. In doing so, we obtain the following
chain of relations.
1
E 2 sin 2 Φ
cos Φ
f ( Φ )
A 1 (1
E 2 sin 2 Φ ) 3 / 2 =1
Λ 1 Λ 2 =1
E 2 ) (1
(14.21)
E 2 sin 2 Φ ) 2 d Φ ⇒ f ( Φ )= A 1 (1 − E 2 ) Φ
cos Φ
cos Φ
d f = A 1 (1 − E 2 )
d Φ
E 2 sin 2 Φ ) 2 ,
(1
(1
0
Search WWH ::




Custom Search