Geography Reference
In-Depth Information
3-45 Direct Transformation of Oblique Quasi-Spherical
Longitude/Latitude
2
4 1 ,A 2
The standard representation of a point X being an element of
E
is given in terms of surface
2
normal ellipsoidal longitude/latitude
{
Λ, Φ
}∈{ R
|
0
Λ< 2 π,
π/ 2 <Φ< + π/ 2
}
,which
2
A 1 ,A 2
excludes North Pole and South Pole of
E
. Accordingly,
{
Λ, Φ
}
constitutes only a first chart
2
A 1 ,A 2
of
E
, i.e.
A 1 cos Φ cos Λ
X 1 = X =
1 − E 2 sin 2 Φ
,
A 1 cos Φ cos Λ
X 2 = Y =
1
,
(3.129)
E 2 sin 2 Φ
E 2 )cos Φ
X 3 = Z = A 1 (1
1
.
E 2 sin 2 Φ
A 1 ,A 2
The ellipsoidal coordinates Λ and Φ are called surface normal since the surface normal of
E
enjoys the spherical image
N = E 1 cos Φ cos Λ + E 2 cos Φ sin Λ + E 3 sin Φ.
(3.130)
2
A 1 ,A 2
2
A 1 ,A 2
A minimal atlas of
, has to be based on two charts given by
Grafarend and Syffus ( 1995 ). The direct mapping of type ( 3.129 ), namely
E
,whichcoversallpointsof
E
{
Λ, Φ
}→{
X,Y,Z
}
,
has the inverse
tan Λ = Y
X ,
1
Z
X 2 + Y 2 .
tan Φ =
(3.131)
1
E 2
By means of ( 3.104 ), ( 3.108 ), and ( 3.109 ), one alternatively derives the direct mapping equations
and inverse mapping equations
X = R ( A, B )[cos A cos B cos Ω − sin A cos B sin Ω cos I +sin B sin Ω sin I ] ,
Y = R ( A, B [cos A cos B sin Ω +sin A cos B cos Ω cos I
sin B cos Ω sin I ] ,
(3.132)
Z = R ( A, B )[sin A cos B sin I +sin B cos I ] ,
tan Λ = cos A cos B sin Ω +sin A cos B cos Ω cos I
sin B cos Ω sin I
cos A cos B cos Ω − sin A cos B sin Ω cos I +sin B sin Ω sin I ,
(3.133)
1
sin A cos B sin I +sin B cos I
cos 2 A cos 2 B +(sin A cos B cos I
tan Φ =
sin B sin I ) 2 .
1
E 2
Let us here additionally collect the result of the transformation
{
A, B
}→{
Λ, Φ
}
by the following
Corollary 3.9 .
Search WWH ::




Custom Search