Geography Reference
In-Depth Information
F 12
F 22
=
1
G 22 ( e 11 − K 2 G 11 ) 2
2 G 12 ( e 11 − K 2 G 11 )( e 12 − K 2 G 12 )+ G 11 ( e 12 − K 2 G 12 ) 2 ×
.
( e 12
K 2 G 12 )
×
e 11
K 2 G 11
Right eigenvalues
(the right general eigenvalue problem reduces to the right special eigenvalue problem):
|
E r
κ i I r
|
=0 ,
tr[E r ] ± (tr[E r ]) 2
4det [E r ] =
κ 1 , 2 = κ ± = 1
2
(2.15)
E 11 + E 22 ±
( E 11 + E 22 ) 2 +(2 E 12 ) 2 .
= 1
2
Right eigencolumns:
f 11
f 21
=
E 22 − k 1
,
( E 22 −k 1 ) 2 + E 12
1
E 12
F r = f 11 f 12
(2.16)
f 21 f 22
f 12
f 22
=
E 12
( E 11 −k 2 ) 2 + E 12
1
E 11
k 2
Since the right Frobenius matrix F r is an orthonormal matrix, it can be represented by
F r = cos φ sin φ
∀φ ∈ [0 , 2 π ] ,
sin φ cos φ
(2.17)
E 12
E 11
2 E 12
E 11
tan φ =
, tan2 φ =
E 22 .
κ
End of Lemma.
Lemma 1.7 is the basis of the proof if we specialize G r =I 2 . Again, we emphasize that within the
right eigenspace analysis the right Frobenius matrix is orthonormal. As an orthonormal matrix,
i.e. F r
2 × 2
F r F r =I 2 and det [F r ]=+1
, it can be properly parameterized
by a rotation angle φ . Such an angle of rotation orientates the right eigenvectors
SO(2) :=
{
F r
R
|
}
{
f 1 , f 2 | O}
2 =span
with respect to
. Indeed, the “ tan2 φ identity” leads to an easy
computation of the orientation of the right eigenvectors.
{
e 1 , e 2
|O}
,
R
{
e 1 , e 2
}
Search WWH ::




Custom Search