Geography Reference
In-Depth Information
2 C 12
2 xy
x 2
tan2 ϕ =
C 11 − C 22 =
− y 2 .
(2.11)
If x = y, then tan ϕ = 1 , tan 2 ϕ →±∞,ϕ = 45 .
End of Example.
2-2 Eigenspace Analysis, Euler-Lagrange Deformation Tensor
Left and right eigenspace analysis and synthesis of the Euler-Lagrange deformation tensor,
special case
{ M
r ,g μν }
=
{ R
2 μν }
.
First, let us confront you with Lemma 2.2 , where we present detailed results of the left and right
eigenspace analysis and synthesis of the Euler-Lagrange deformation tensor for the special case
of a right Euclidean manifold. Second, we focus on an interpretation of the results.
Lemma 2.2 (Left and right eigenspace analysis and synthesis of the Euler-Lagrange deformation
tensor, special case
2
2 μν }
{ M
r ,g μν }
=
{ R
).
(i) Synthesis.
For the pair of symmetric matrices
are posi-
tive definite, a simultaneous diagonalization is (the right Frobenius matrix F r is an orthonormal
matrix)
{
E l , G l
}
or
{
E r , G r
}
, where the matrices
{
G l , G r
}
F l E l F l =diag[ K 1 ,K 2 ] , F l G i F l =I versus
F r E r F r =diag[ κ 1 2 ] ,
F r F 1 =I .
(2.12)
(ii) Analysis.
Left eigenvalues:
|
E l
K i G l |
=0 , K 1 , 2 = K ±
= 1
2
tr[E l G l ] ±
4det [E l G l ] .
(tr[E l G l ]) 2
(2.13)
Left eigencolumns:
F 11
F 21
=
1
G 11 ( e 22
K 1 G 12 ) 2 ×
K 1 G 22 ) 2
2 G 12 ( e 12
K 1 G 12 )( e 22
K 1 G 22 )+ G 22 ( e 12
e 22
,
K 1 G 22
×
(2.14)
( e 12
K 1 G 12 )
Search WWH ::




Custom Search