Biomedical Engineering Reference
In-Depth Information
57. Martini FH, Bartholomew EF (2000) Chapter 6: the skeletal system. Essentials of anatomy &
physiology, 2nd edn. Prentice-Hall, Inc, New Jersey, pp 120-165
58. Mjoberg B, Petterson H, Roseqvist R, Rydholm A (1984) Bone cement, thermal injury and
radiolucent zone. Acta Orthop Scand 55:597-600
59. Moritz AR, Henriques FC (1947) Studies of thermal injury—the relative importance of time
and surface temperature in the causation of cutaneous burns. Am J Pathol 23:695-720
60. Morscher EW, Wirz D (2002) Current state of cement fixation in THR. Acta Orthop Belg
68(1):1-12
61. Mousa WF, Kobayashi M, Shinzato S, Kamimura M, Neo M, Yoshihara S, Nakamura T
(2000) Biological and mechanical properties of PMMA-based bioactive bone cements.
Biomaterials 21(21):2137-2146
62. Murphy BP, Prendergast PJ (2000) On the magnitude and variability of the fatigue strength
of acrylic bone cement. Int J Fatigue 22(10):855-864
63. Narva KK, Lassila LVJ, Vallittu PK (2005) Flexural fatigue of denture base polymer with
fiber-reinforced composite reinforcement. Compos Part A Appl Sci Manuf 36(9):1275-1281
64. Norman TL, Kish V, Blaha JD, Gruen TA, Hustosky K (1995) Creep characteristics of hand-
mixed and vacuum-mixed acrylic bone-cement at elevated stress levels. J Biomed Mater Res
29(4):495-501
65. NJR (2006) National joint registry for England and Wales 3rd annual clinical report January
2007, from wwwnjrcentreorguk
66. Nuno N, Amabili M (2002) Modelling debonded stem-cement interface for hip implants:
effects of residual stresses. Clin Biomech 17(1):41-48
67. Ormsby R, McNally T, Mitchell CA, Dunne N (2010) Incorporation of multiwall carbon
nanotubes to acrylic based bone cements: effects on mechanical and thermal properties. J
Mech Behav Biomed Mater 3(2):136-145
68. Ormsby R, McNally T, Mitchell CA, Dunne N (2010) Influence of multiwall carbon nano-
tube functionality and loading on mechanical properties of PMMA/MWCNT bone cements.
J Mater Sci Mater Med 21:2287-2292
69. Orr JF, Dunne NJ, Quinn JC (2003) Shrinkage stresses in bone cement. Biomaterials 24(17):
2933-2940
70. Pal S, Saha S (1982) Stress relaxation and creep behaviour of normal and carbon fibre rein-
forced acrylic bone cement. Biomaterials 3:93-96
71. Pande S, Mathur RB, Singh BP, Dhami TL (2009) Synthesis and characterization of multi-
walled carbon nanotubes-polymethyl methacrylate composites prepared by in situ polymer-
ization method. J Polym Compos 30(9):1312-1317
72. Pilliar RM, Blackwell R, Macnab I, Cameron HU (1976) Carbon fiber reinforced bone
cement in orthopedic surgery. J Biomed Mater Res 10(6):893-906
73. Prendergast PJ (2001) Chapter 35: Bone prostheses and implants. Bone mechanics handbook
Cowin, SC. CRC Press, LLC
74. Pukanszky B (2005) Interfaces and interphases in multicomponent materials: past, present,
future. Eur Polym J 41(4):645-662
75. Robinson RP, Wright TM, Burstein AH (1981) Mechanical properties of poly(methyl meth-
acrylate) bone cements. J Biomed Mater Res 15(2):203-208
76. Roques A, Browne M, Taylor A, New A, Baker D (2004) Quantitative measurement of the
stresses induced during polymerisation of bone cement. Biomaterials 25(18):4415-4424
77. Saha S, Pal S (1986) Mechanical characterization of commercially made carbonfibre-
reinforced polymethylmethacrylate. J Biomed Mater Res 20(6):817-826
78. Sauer JA, Richardson GC (1980) Fatigue of polymers. Int J Fract 16(6):499-532
79. Scheirs J (2000) Chapter 15: Failure of fibre-reinforced composites. Compositional and fail-
ure analysis of polymers a practical approach. Wiley, New York, pp 449-481
80. Scheirs J (2000) Chapter 12: Mechanical failure mechanisms of polymers. Compositional
and failure analysis of polymers a practical approach. Wiley, New York, pp 304-362
81. Serbetci K, Korkusuz F, Hasirci N (2004) Thermal and mechanical properties of hydroxyapa-
tite impregnated acrylic bone cements. Polym Test 23(2):145-155
Search WWH ::




Custom Search