Biomedical Engineering Reference
In-Depth Information
34. Hendriks JGE, van Horn JR, van der Mei HC, Busscher HJ (2004) Backgrounds of antibiotic-
loaded bone cement and prosthesis-related infection. Biomaterials 25(3):545-556
35. Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach
to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett
174:49-60
36. Hrkach JS, Peracchia MT, Bomb A, Lotan N, Langer R (1997) Nanotechnology for biomate-
rials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1 H
NMR spectroscopy. Biomaterials 18(1):27-30
37. Huang KY, Yan JJ, Lin RM (2005) Histopathologic findings of retrieved specimens of
vertebroplasty with polymethylmethacrylate cement—case control study. Spine 30(19):
E585-E588
38. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University
Press, Cambridge
39. Hungerford DS, Jones LC (1988) The rationale of cementless revision of cemented arthro-
plasty failures. Clin Orthop Relat Res 235:12-24
40. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56-58
41. Iijima S (2002) Carbon nanotubes: past, present, and future. Physica B Condens Matter
323(1-4):1-5
42. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN (2006) Direct
and indirect effects of single walled carbon nanotubes on RAW 2647 macrophages: role of
iron. Toxicol Lett 165(1):88-100
43. Karrholm J, Garellick G, Rogmark C, Herberts P (2008) Annual Report 2007 The Swedish
National Hip Arthroplasty Register. http://wwwjruorthopguse
44. Keener JD, Callaghan JJ, Goetz DD, Pederson DR, Sullivan PM, Johnston RC (2003) Twenty-
five-year results after charnley total hip arthroplasty in patients less than fifty years old—a
concise follow-up of a previous report. J Bone Joint Surg Am 85A(6):1066-1072
45. Kotha SP, Li C, Schmid SR, Mason JJ (2004) Fracture toughness of steel fi ber—reinforced
bone cement. J Biomed Mater Res A 70(3):514-521
46. Kotha SP, Li C, McGinn P, Schmid SR, Mason JJ (2006) Improved mechanical properties of
acrylic bone cement with short titanium fiber reinforcement. J Mater Sci Mater Med
17(8):743-748
47. Kuehn KD, Ege W, Gopp U (2005) Acrylic bone cements: compositions and properties.
Orthop Clin North Am 36:17-28
48. Lee RR, Ogiso M, Watanabe A, Ishihara K (1997) Examination of hydroxyapatite filled
4-META/MAA-TBB adhesive one cement in vitro and in vivo environment. J Biomed Mater
Res 38(1):11-16
49. Lennon AB, Prendergast PJ (2002) Residual stress due to curing can initiate damage in
porous bone cement: experimental and theoretical evidence. J Biomech 35(3):311-321
50. Lewis G (1997) Properties of acrylic bone cement: state of the art review. J Biomed Mater
Res 38(2):155-182
51. Lewis G (2000) Relative roles of cement molecular weight and mixing method on the fatigue
performance of acrylic bone cement: simplex-p versus osteopal. J Biomed Mater Res
53(1):119-130
52. Lewis G, Janna S, Carroll M (2003) Effect of test frequency on the in vitro fatigue life of
acrylic bone cement. Biomaterials 24(6):1111-1117
53. Linder L (1977) Reaction of bone to the acute chemical trauma of bone cement. J Bone Joint
Surg 59(1):82-87
54. Mandell JF, Huang DD, McGarry FJ (1980) Crack propagation modes in injection molded
fibre reinforced thermoplastics. School of Engineering, Massachusetts Institute of technology,
Cambridge, Massachusetts, pp 1-34
55. Marrs B, Andrews R, Rantell T, Pienkowski DA (2005) Augmentation of acrylic bone cement
with multiwall carbon nanotubes. Part A. J Biomed Mater Res 77(A):269-276
56. Marrs B (2007) Carbon nanotube augmentation of a bone cement polymer. PhD Thesis,
University of Kentucky
Search WWH ::




Custom Search