Information Technology Reference
In-Depth Information
Ta b l e 1 . Some variants of the involutions S 2;1
#
y 1 = f 1 ( x 1 , x 2 , v )
y 2 = f 2 ( x 1 , x 2 , v )
x 1 v x 2 v x 1
x 1 x 2 x 2 v
1
2
x 1 v x 2 v x 2
x 1 x 2 v
3
x 1 x 2 v x 2
x 1 v x 2
4
x 1 x 2 v v
( x 1 1 )( v 1 ) x 2
5
x 1 v x 2 v x 1
x 2 v x 1 x 2
(
1
)(
2
,
9
)(
3
,
17
)(
4
,
25
)(
5
)(
6
,
13
)(
7
,
21
)(
8
,
29
)(
10
)(
11
,
18
)
) ,
I 1 :
(
,
)(
)(
,
)(
,
)(
)(
,
)(
)(
,
)(
)(
12
26
14
15
22
16
30
19
20
27
23
24
31
28
32
(
1
)(
10
)(
19
)(
28
)(
37
)(
46
)(
55
)(
64
)(
56
,
63
)(
47
,
54
,
48
,
62
)
I 2 :
(
,
,
,
,
,
)(
,
,
,
,
,
,
,
)
38
45
39
53
40
61
29
36
30
44
31
52
32
60
(
20
,
27
,
21
,
35
,
22
,
43
,
23
,
51
,
24
,
59
)(
11
,
18
,
12
,
26
,
13
,
34
,
14
,
42
,
15
,
50
,
16
,
58
)
) .
The difference between the boxes S 32;96 (Fig. 3c) and S 1
(
2
,
9
,
3
,
17
,
4
,
25
,
5
,
33
,
6
,
41
,
7
,
49
,
8
,
57
32;96 (Fig. 3d) and between
the boxes S 64;192 (Fig. 3e) and S 1
64;192 (Fig. 3f) consists only in the use of the components
V 1 , V 2 ,..., V 6 of the controlling vector V . It is easy to see that swapping the components V j
and V s j + 1 for j
s in arbitrary symmetric COS box defines switching between
two mutually inverse boxes S n ; m and S 1
=
1
,
2
,...,
n ; m .
Switchable COS Boxes S ( V , e )
32;96 and S ( V , e )
2.2
64;192
Due to symmetric structure of S 32;96 -box (and S 64;192 -box) its modifications S V ,where
V
,and S V ,where V =(
are mutually inverse. Such prop-
erty is a core one for the design of the switchable COS boxes S ( V , e )
64;192
=(
V 1 ,
V 2 ,...
V 6 )
V 6 ,
V 5 ...,
V 1 )
and S ( V , e )
32;96 .The
lasts can be constructed using very simple transposition box P ( e )
96;1 implemented as some
single layer CP box consisting of three parallel single-layer boxes P ( e )
2 × 16;1
(Fig. 4a).
Input of each P ( e )
2 × 16;1 -box is divided into 16-bit left and 16-bit right inputs. The box
P ( e )
2
16;1 represents 16 parallel P ( e )
2;1 -boxes controlled with the same bit e . The right (left)
inputs (outputs) of 16 parallel boxes P ( e )
2;1
×
compose the right (left) 16-bit input (output)
of the box P ( e )
2
16;1 . Thus, each of three boxes P ( e )
16;1 performs e -dependent swapping
of the respective pair of the 16-bit components of the controlling vector V .
For example, P ( 0 )
×
2
×
and P ( 1 )
2 × 16;1 (
V 1 ,
V 6 )=(
V 1 ,
V 6 )
2 × 16;1 (
V 1 ,
V 6 )=(
V 6 ,
V 1 )
.Ifthein-
put vector of the box P ( e )
96;1
, then at the output of P ( e )
96;1
we have V =
is
(
V 1 ,
V 2 ,...
V 6 )
0) or V =(
(
V 1 ,
V 2 ,...,
V 6 )
(if e
=
V 6 ,
V 5 ,...,
V 1 )
(if e
=
1). Structure of the switchable
COS box S ( V , e )
32;96 is shown in Fig. 4b. In Section 3 we design SCO-based ciphers using
the boxes S ( V , e )
32;96 and S ( V , e )
32;96 the controlled elements of which are described by pair of
Boolean functions given in rows 1 and 5 of Table 2, correspondingly.
The switchable COS box S ( V , e )
64;192 can be constructed with the use of transposition box
P ( e )
192;1 that represents three parallel single-layer boxes P ( e )
32;1 (Fig. 4c). Each P ( e )
32;1 -
2
×
2
×
Search WWH ::




Custom Search