Digital Signal Processing Reference
In-Depth Information
5
0
5
0
5
10
15
20
25
30
5
10
15
20
25
30
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
( a )
( b )
5
0
5
0
5
10
15
20
25
30
5
10
15
20
25
30
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
(c)
(d)
FIG. 3.9 The directivity factor of the first-order cardioid, as a function of frequency, for
different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d) Δ = 5 cm.
2
1 − e 2 ωτ 0
G
NS,1 [ h
( ω )] =
2
1 − e ωτ 0 (1+cos θ N )
1 cos(2 ωτ 0 )
1 cos[ ωτ 0 (1+cos θ N )] ,
=
(3.32)
∀f for θ N = 180 . Figure 3.10 gives plots of
where G
NS,1 [ h
( ω )] =
∞,
G
( ω )], as a function of θ N , for several frequencies and two values of
δ . For small values of ωτ 0 , (3.32) becomes
NS,1 [ h
1
G NS,1 [ h
( ω )]
2 ,
(3.33)
1
2 + 1
2 cos θ N
which corresponds to the theoretical gain of the first-order cardioid.
Search WWH ::




Custom Search