Digital Signal Processing Reference
In-Depth Information
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
F (kHz)
F (kHz)
( a )
( b )
10
10
0
0
10
10
20
20
30
30
40
40
50
50
60
60
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0
0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
F (kHz)
F (kHz)
(c)
(d)
FIG. 3.8 The white noise gain of the first-order cardioid, as a function of frequency, for
different values of Δ : (a) Δ = 1 cm, (b) Δ = 2 cm, (c) Δ = 3 cm, and (d) Δ = 5 cm.
Figure 3.9 gives plots of G DN,1 [ h
( ω )] from (3.29), as a function of frequency,
for different values of δ . It can be verified that
G
DN,1 [ h
( ω )] > G
WN,1 [ h
( ω )] .
(3.30)
For small values of ωτ 0 , we have
3
2( ωτ 0 ) 2
( ω )] 2( ωτ 0 ) 2 ·
G
DN,1 [ h
3 ,
(3.31)
which corresponds exactly to the theoretical value of the directivity factor
for a cardioid with diffuse noise [1].
Finally, to end this section, we give the gain for a point noise source:
Search WWH ::




Custom Search