Agriculture Reference
In-Depth Information
[47] Doran, J.B., Cripe, J., Sutton, M., & Foster, B. (2000). Fermentations of pectin-rich
biomass with recombinant bacteria to produce fuel ethanol. Applied Biochemistry and
Biotechnology, 84-86, 141-152.
[48] Edwards, M.C., & Doran-Peterson, J. (2012). Pectin-rich biomass as feedstock for fuel
ethanol production. Applied Microbiology and Biotechnology, 95, 565-575.
[49] Bai, F.W., Anderson, W.A., & Moo-Young, M. (2008). Ethanol fermentation
technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89-105.
[50] von Sivers, M., & Zacchi, G., (1995). A techno-economical comparison of three
processes for the production of ethanol from pine . Bioresource Technology, 51, 43-52.
[51] Zykwinska, A., Rondeau-Mouro, C., Garnier, C., Thibault, J.F., & Ralet, M.C. (2006).
Alkaline extractability of pectic arabinan and galactan and their mobility in sugar beet
and potato cell walls. Carbohydrate Polymers, 65, 510-520.
[52] Ivetić, D.Ţ., Šćiban. M.B., & Antov, M.G. (2012). Enzymatic hydrolysis of pretreated
sugar beet shreds: Statistical modeling of the experimental results. Biomass and
Bioenergy , 47, 387-394.
[53] Ivetić, D.Ţ., Vasić, D.M., Šćiban, M.B., & Antov, M.G. (2011). Analysis of
pretreatments of sugar beet shreds for bioethanol production in respect of cellulose
hydrolysis and waste flows. Acta Periodica Technologuca, 42, 223-230.
[54] Šćiban, M., Kukić, D., Ivetić, D., Prodanović, J., & Antov, M. (2013). Possibility of
using of treated beet shreds from process of bioethanol production for animal feed.
Journal on Processing and Energy in Agriculture, 17, 124-126.
[55] Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011).
Dietary fibre and fibre-rich by-products of food processing: Characterisation,
technological functionality and commercial applications: A review . Food Chemistry,
124, 411-421.
[56] Oosterveld, A., Beldman, G., Schols, H.A., & Voragen, A.G.J. (2000). Characterization
of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar
beet pulp. Carbohydrate Research 328, 185-197.
[57] Concha, J., Weinstein, C., & Zuniga, M.E. (2013). Production of pectic extracts from
sugar beet pulp with antiproliferative activity on a breast cancer cell line. Frontiers in
Chemical Science and Engineering, 7, 482-489.
[58] Oosterveld, A., Beldman, G., Searle-van Leeuwen, H.A., & Voragen, A.G.J. (2000).
Effect of enzymatic deacetylation on gelation of sugar beet pectin in the presence of
calcium. Carbohydrate Polymers, 43, 249-256.
[59] Oosterveld, A., Beldman, G., & Voragen, A.G.J. (2002). Enzymatic modification of
pectic polysaccharides obtained from sugar beet pulp. Carbohydrate Polymers, 48, 73-
81.
[60] Sivapragasam, N., Thavarajah, P., Ohm, J.B., & Thavarajah, D. (2014). Enzyme
resistant carbohydrate based micro-scale materials from sugar beet ( Beta vulgaris L.)
pulp for food and pharmaceutical applications . Bioactive Carbohydrates and Dietary
Fibre, 3, 115-121.
[61] Leijdekkers, A.G.M., Aguirre, M., Venema, K., Bosch, G., Gruppen, H., & Schols, H.A.
(2014). In vitro fermentability of sugar beet pulp derived oligosaccharides using human
and pig fecal inocula. Journal of Agricultural and Food Chemistry, 62, 1079-1087.
[62] Holck, J., Hgjerno, K., Lorentzen, A., Vigsnes, L.K., Hemmingsen, L., Licht, T.R.,
Mikkelsen,
J.D.,
&
Meyer,
A.S.
(2011).
Tailored
enzymatic
production
of
Search WWH ::




Custom Search