Agriculture Reference
In-Depth Information
pectinase production. World Journal of Microbiology and Biotechnology, 21, 1483-
1486.
[31] Li, Z., Bai, Z., Zhang, B., Li, B., Jin, B., Zhang, M., Lin, F., & Zhang, H. (2012).
Purification and characterization of alkaline pectin lyase from a newly isolated Bacillus
clausii and its application in elicitation of plant disease resistance. Applied Biochemistry
and Biotechnology, 167, 2241-2256.
[32] Tepe, O., & Dursun, A.Y. (2014). Exo-pectinase production by Bacillus pumilus using
different agricultural wastes and optimizing of medium components using response
surface methodology. Environmental Science and Pollution Research, 21, 9911-9920.
[33] Peričin, D., Antov, M., Markov, S., Karlović, D., & Latkovska, M. (1996).. Effects of
phosphate, pH and sugar beet shreds on pectinolytic activity of Polyporus squamosus .
Proceedings on 1 st Congress of Biologists of Macedonia (with international,
participation), Ohrid, Macedonia, 85.
[34] Pandey, A. (2003) Solid state fermentation. Biochemical Engineering Journal, 13, 81-
84.
[35] Krishna, C. (2005). Solid-state fermentation systems - an overview. Critical Reviews in
Biotechnology, 25, 1-30.
[36] Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state
fermentation. Biochemical Engineering Journal, 81, 146- 161.
[37] Hutnan, M., Drtil, M., & Mrafkova, L. (2000). Anaerobic biodegradation of sugar beet
pulp. Biodegradation, 11, 203-211.
[38] Suhartini, S., Heaven, S., & Banks, C.J. (2014). Comparison of mesophilic and
thermophilic anaerobic digestion of sugar beet pulp: Performance, dewaterability and
foam control. Bioresource Technology, 152, 202-211.
[39] Hunter, W.J., Manter, D.K., & van der Lelie, D. (2012). Biotransformation of ferulic
acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes . Current Microbiology,
65, 752-757.
[40] Lesage-Meessen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Asther, M., Moukha,
S., Record, E., Sigoillot, J-C., & Asther, M. (1999). Fungal transformation of ferulic
acid from sugar beet pulp to natural vanillin. Journal of the Science of Food and
Agriculture, 79, 487-490.
[41] Yoo, S.D., & Harcum, S.W. (1999). Xanthan gum production from waste sugar beet
pulp. Bioresource Technology, 70, 105-109.
[42] Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M.J. (2010). Pretreatment
technologies for an efficient bioethanol production process based on enzymatic
hydrolysis: a review. Bioresource Technology, 101, 4851-4861.
[43] Hendriks, A.T.W.M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility
of lignocellulosic biomass. Bioresource Technology, 100, 10-18.
[44] Borjesson, J., Engqvist, M,, Sipos, B., & Tjerneld, F. (2007) Effect of poly(ethylene
glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated
lignocellulose. Enzyme and Microbial Technology, 41, 186-195.
[45] Aho, A., Kaldstrom, M., Kumar, N., Eränen, K., Hupa, M., Holmbom, B., Salmia, T.,
Fardim, P., & Murzin, D.Y. (2013). Pyrolysis of beet pulp in a fluidized bed reactor.
Journal of Analytical and Applied Pyrolysis, 104, 426-432.
[46] Yilgin, M., Deveci Duranay, N., & Pehlivan, D. (2010). Co-pyrolysis of lignite and
sugar beet pulp, Energy Conversion and Management , 51, 1060-1064.
Search WWH ::




Custom Search