Geoscience Reference
In-Depth Information
The final discretized transport equation is written as
n
+
1
n
+
1
n
P
n
P
ρ
φ
ρ
φ
n
+
1
n
+
1
n
+
1
n
+
1
n
+
1
P
P
A P
=
a W
φ
+
a E
φ
+
a S
φ
+
a N
φ
a P
φ
b
(4.134)
+
W
E
S
N
P
t
where
F w exp
(
F w
/
D w
)
F e
a W =
1 ,
a E =
1 ,
exp
(
F w
/
D w
)
exp
(
F e
/
D e
)
F s exp
(
F s
/
D s
)
F n
a S
=
1 ,
a N
=
1 ,
(4.135)
exp
(
F s
/
D s
)
exp
(
F n
/
D n
)
a P
=
a W
+
a E
+
a S
+
a N
+ (
F e
F w
+
F n
F s
)
, and b
=
S
A P .
F s in the coefficient a P can be treated by using the discretized
continuity equation introduced in Section 4.4.
In fact,
The term F e
F w
+
F n
A P and the quantities F and D at cell faces in Eqs. (4.132) and (4.133)
can be evaluated using only the parameters in the Cartesian coordinate systemwithout
involving the increments
ξ
and
η
(Peric, 1985; Zhu, 1992a). The area of the control
volume is calculated by
1
2 | (
A P
=
x ne
x sw
)(
y nw
y se
) (
x nw
x se
)(
y ne
y sw
) |
(4.136)
The convection fluxes at faces w and s are determined by
n
+
1
u n + 1
ξ
n
+
1
b 1 u x
b 2 u y
n
+
1
F w
= ρ
(
J
η)
ˆ
= ρ
(
+
)
w
w
, w
w
w
n
+
1
u n + 1
η
n
+
1
b 1 u x
b 2 u y
n
+
1
F s
= ρ
(
J
ξ)
ˆ
= ρ
(
+
)
(4.137)
s
s
, s
s
s
where b 1
1
1
, b 2
1
2
, b 1
2
1
=
J
α
η (∂
y
/∂η)η
=
J
α
η ≈− (∂
x
/∂η)η
=
J
α
ξ
, and b 2 =
2
2
(∂
y
/∂ξ)ξ
J
α
ξ (∂
x
/∂ξ)ξ
according to Eq. (4.79). The difference
equations for b i
at center P and faces w and s of the control volume shown in Fig.
4.21 are:
b 1 P =
b 1 w =
y sw , b 1 s =
y n
y nw
y P
y s ,
y S ,
b 2 P =
b 2 w =
x nw , b 2 s =
x s
x n ,
x sw
x S
x P ,
b 1 P =
b 1 w =
y P , b 1 s =
y w
y e ,
y W
y sw
y se ,
b 2 P =
b 2 w =
x W , b 2 s =
x e
x w ,
x P
x se
x sw .
(4.138)
The diffusion parameters at faces w and s are computed by
1
j
1
j
b 1 b 1 +
b 2 b 2 ) w /
D w = (
J
α
α
η) w w = w (
A w
2
j
2
j
b 1 b 1 +
b 2 b 2 )
D s
= (
J
α
α
ξ)
=
(
/
A s
(4.139)
s
s
s
s
 
Search WWH ::




Custom Search