Environmental Engineering Reference
In-Depth Information
[14] Wan J, Dong W, Tokunaga TK. method to attenuate u(VI) mobility in acidic wasteplumes using humic acids. environ Sci Technol
2011;45 (6):2331-2337.
[15] Ziechmann W. Huminstoffe . Weinheim: Verlag chemie; 1980.
[16] Visser SA. Oxidation-reduction potentials and capillary activities of humic acids. Nature 1964;204:581.
[17] Helburn RS, maccarthy P. Determination of some redox properties of'humic acid byalkaline ferricyanide titration. Anal chim Acta
1994;295:263-272.
[18] Skogerboe RK, Wilson SA. Reduction of ionic species by fulvic acid. Anal chem 1981;53:228-232.
[19] Oesterberg R, Shirshova l. Non-equilibrium oscillating redox properties of humic acids. Geochim cosmochim Acta
1997;61:4599-4604.
[20] Struyk Z, Sposito G. Redox properties of standard humic acids. Geoderma 2001;102:329-346.
[21] Scott DT, mcKnight Dm, Blunt-Harris el, Kolesar Se, lovley DR. Quinone moieties act as electron acceptors in the reduction of
humic substances by humics-reducing microorganisms. environ Sci Technol 1998;32:2984-2989.
[22] Bondietti eA, Reynolds SA, Shanks mN. Transuranic Nuclides in the Environment . Vienna: IAeA; 1976.
[23] Andre c, choppin GR. Reduction of Pu(V) by humic acid. Radiochim Acta 2000;88:613-616.
[24] Zhang YJ, Bryan ND, livens FR, Jones mN. Selectivity in the complexation of actinides by humic substances. environ Pollut
1997;96:361-367.
[25] Fukusima m, Nakayasu K, Tanaka S, Nakamara H. Speciation analysis of chromium after reduction of cromium (VI) by humic acid.
Toxicol environ chem 1997;62:207-215.
[26] Wittbrodt PR, Palmer cD. effect of temperature, ionic strength, background electrolytes and Fe (III) on the reduction of hexavalent
chromium by soil humic substances. environ Sci Technol 1996;30:2470-2477.
[27] Zhilin Dm, Schmitt-Kopplin P, Perminova IV. Reduction of cr(VI) by peat and coal humic substances. environ chem lett
2004;2:141-145.
[28] Perminova IV, Kovalenko AN, Schmitt-Kopplin P, Hatfield K, Hertkorn N, Belyaeva eY, Petrosyan VS. Design of quinonoid-enriched
humic materials with enhanced redox properties. environ Sci Technol 2005;39 (21):8518-8524.
[29] matthiessen A. Determining the redox capacity of humic substances. Vom Wasser 1995;84:229-235.
[30] Shcherbina NS, Kalmykov SN, Perminova IV, Kovalenko AN. Reduction of actinides in higher oxidation states by hydroquinone-
enriched humic derivatives. J Alloy comp 2007;444-445:518-521.
[31] Shcherbina NS, Perminova IV, Kalmykov SN, Kovalenko AN, Haire RG, Novikov AP. Redox and complexation Interactions of
Neptunium(V) with Quinonoid-enriched Humic Derivatives. environ Sci Technol 2007;41 (20):7010-7015.
[32] morgenstern c, choppin GR. Kinetics of the oxidation of Pu(IV) by manganese oxide. Radiochim Acta 2002;90:69-74.
[33] Sachs S, Bernhard G. NIR spectroscopic study of the complexation of neptunium(V) with humic acids: influence of phenolic OH groups
on the complex formation. Radiochim Acta 2005;93:141-145.
[34] Keller c. The Chemistry of the Transuranium Elements . New York: Verlag chemie; 1971.
[35] Watson DB, Doll We, Gamey TJ, Jardine Pm. Technical Report . Oak Ridge, TN: Oak Ridge Field Research center; 2001.
[36] Rybaltchenko, A. I.; Pimenov, m. K; Kostin, P. P. The Deep Injection of LRW ; IzdAT: moscow, 1994, (in Russian).
[37] Novikov AP, Kalmykov SN, utsunomiya S, ewing R, Horreard F, merkulov A, clark SB, Tkachev VV, myasoedov BF. colloid trans-
port of plutonium in the far-field of the mayak Production Association, Russia. Science 2006;314:638-641.
[38] Khasanova AB, Kalmykov SN, Shcherbina NS, Kovalenko AN, Perminova IV, clark S. Recent Advances in Actinide Science . In
Proceedings of the eighth Actinide conference, Actinide 2005 Alvarez, R.; Bryan ND, may I, editors. 2005 July 4-8; manchester: RSc
Publishing; 2006. p 86-88.
[39] Kalmykov SN, Schaefer T, claret F, Perminova IV, Petrova (Khasanova) AB, Shcherbina NS, Teterin YA. Sorption of neptunium onto
goethite in the presence of humic acids with different hydroquinone group content. Radiochim Acta 2008;96 (9-11):685-690.
[40] claret F, Bauer A, Schaefer T, Griffault l, lanson B. experimental investigation of the interaction of clays with high-pH solutions: case
study from the callovo-Oxfordian formation, meuse-Haute marne underground laboratory (France). clay clay miner 2002;50
(5):633-646.
[41] Kretzschmar R, Schafer T. metal retention and transport on particles in the environment. elements 2005;1 (4):205-210.
[42] lerotic m, Jacobsen c, Schäfer T, Vogt S. cluster analysis of soft x-ray spectromicroscopy data. ultramicroscopy 2004;100
(1-2):35-57.
[43] Schafer T, Hertkorn N, Artinger R, claret F, Bauer A. Functional group analysis of natural organic colloids and clay association kinetics
using c(1s) spectromicroscopy. J Phys 2003;IV (104):409-412.
[44] claret F, Schafer T, Rabung T, Wolf m, Bauer A, Buckau G. Differences in properties and cm(III) complexationbehavior of isolated
humic and fulvic acid derived from Opalinus clay and callovo-Oxfordian argillite. Appl Geochem 2005;20:1158-1168.
[45] Schaefer T, Buckau G, Artinger R, Kim JI, Geyer S, Wolf m, Bleam WF, Wirick S, Jacobsen c. Origin and mobility of fulvic acids in
the Gorlebenaquifer system: implications from isotopic data andcarbon/sulfur xANeS. Org Geochem 2005;36 (4):567-582.
Search WWH ::




Custom Search