Environmental Engineering Reference
In-Depth Information
an inset in Figure 36.14. As seen in the igure, the adsorption times are approximately the
same for As(III) and As(V) at the same inlet concentrations. Furthermore, the solute uptakes
calculated from the breakthrough curves are found to be consistent with the batch equi-
librium data, reconirming the potential application of such materials for water puriiers.
References
1. Available at http://en.wikipedia.org/wiki/Water#Health_and_pollution.
2. A. Mukherjee, M.K. Sengupta, M.A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M.M.
Rahman, D. Chakraborti. Arsenic contamination in groundwater: A global perspective with
emphasis on the Asian scenario. J. Health Popul. Nutr. , 24(2):142-163, 2006.
3. WHO. Guidelines for drinking-water quality irst addendum to third edition. Available at
http://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf (accessed March 15, 2008).
4. P.L. Smedley, D.G. Kinniburgh. Sources and behaviour of arsenic in natural water. In United
Nations Synthesis Report on Arsenic in Drinking Water , Panamerican Health Organization, WA,
2005.
5. V. Gopal, K.P. Elango. Equilibrium, kinetic and thermodynamics studies of adsorption of luo-
ride into plaster of Paris. J. Hazard. Mater. , 141(1):98-105, 2007.
6. A.K. Chaturvedi, K.P. Yadava, K.C. Pathak, V.N. Singh. Deluoridation of water by adsorption
on ly ash. Water, Air Soil Pollut. , 49:51-61, 1990.
7. Y. Cengeloglu, E. Kir, M. Ersoz. Removal of luoride from aqueous solution by using red mud.
Sep. Purif. Technol. , 28:81-86, 2002.
8. M. Srimurali, A. Pragathi, J. Karthikeyan. A study on removal of luoride from drinking water
by adsorption onto low-cost materials. Environ. Pollut. , 99:285-289, 1998.
9. S.M. Maliyekkal, A.K. Sharma, L. Philip. Manganese-oxide-coated alumina: A promising sor-
bent for deluoridation of water. Water Res. , 40(19):3497-3506, 2006.
10. N. Das, P. Pattanaik, R. Das. Deluoridation of drinking water using activated titanium rich
bauxite. J. Colloid Interface Sci. , 292(1):1-10, 2005.
11. A. Măicăneanu, C. Indolean, S. Burcă, M. Stanca, H. Bedelean, M. Cornelia. Organics removal
from aqueous solutions using suspended and immobilized Romanian bentonites. Stud. Univ.
Babes-Bolyai, Seria Chem. , 56(1):81-93, 2011.
12. D. Mohan, C.U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents—A criti-
cal review. J. Hazard. Mater. , 142:1-53, 2007.
13. J.A. Munoz, A. Gonzalo, M. Valiente. Arsenic adsorption by Fe(III)-loaded open-celled cellu-
lose sponge. Thermodynamic and selectivity aspects. Environ. Sci. Technol. , 36(15):3405-3411,
2002.
14. E.A. Deliyanni, D.N. Bakoyannakis, A.I. Zouboulis, K.A. Matis. Sorption of As(V) ions by
akaganeite-type nanocrystals. Chemosphere , 50:155-163, 2003.
15. W. Chen, R. Parette, J. Zoua, F.S. Cannon, B.A. Dempsey. Arsenic removal by iron-modiied
activated carbon. Water Res. , 41(9):1851-1858, 2007.
16. G. Muñiz, V. Fierro, A. Celzard, G. Furdin, G. Gonzalez-Sánchez, M.L. Ballinas. Synthesis, char-
acterization and performance in arsenic removal of iron-doped activated carbons prepared by
impregnation with Fe(III) and Fe(II). J. Hazard. Mater. , 165:893-899, 2009.
17. N. Khalili, J. Vyas, W. Weangkaew, S. Westfall, S. Parulekar, R. Sherwood. Synthesis and char-
acterization of activated carbon and bioactive adsorbent produced from paper mill sludge. Sep.
Purif. Technol. , 26:295-304, 2002.
18. A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche, A. Hellal. Determination of the adsorp-
tion capacity of activated carbon made from coffee grounds by chemical activation with ZnCl 2
and H 3 PO 4 . J. Hazard. Mater. , 119(1-3):189-194, 2005.
Search WWH ::




Custom Search