Environmental Engineering Reference
In-Depth Information
The results for the remaining 728 combinationsmay be readily obtained using a sim-
ilar approach, with Table 2.1and the solution structure theorem.
By the solution structure theorem, we first develop u
=
W ψ (
x
,
y
,
z
,
t
)
, the solution
for the case of f
0. Based on the given boundary conditions (2.53), we should
use the eigenfunctions in Rows 1,6 and 7 in Table 2.1 to expand the solution
= ϕ =
sin γ l z
c 1 + ϕ l
+
m , n , l = 1
sin m
π
x
cos μ n y
b 1
u
(
x
,
y
,
z
,
t
)=
T mnl (
t
)
,
a 1
y
b 1 h 2
where
μ n and
γ l are the positive zero points of f
(
y
)=
cot y
and g
(
z
)=
z
c 1 h 1 , respectively, and tan
ϕ l = γ l
tan z
c 1 h 1 . Substituting this into the wave equation
in PDS (2.52) and comparing the coefficients yields
+
T mnl (
2
mnl T mnl (
t
)+ ω
t
)=
0
,
a 2 m
2 . The general solution of this equa-
2
μ n
b 1
2
γ l
c 1
π
a 1
2
mnl
where
ω
=
+
+
tion reads
T mnl (
t
)=
a mnl cos
ω mnl t
+
b mnl sin
ω mnl t
.
sin γ l z
c 1 + ϕ l .
+
sin m
π
x
cos μ n y
b 1
Thus
u
=
m , n , l = 1 (
a mnl cos
ω mnl t
+
b mnl sin
ω mnl t
)
a 1
Applying the initial condition u
(
x
,
y
,
z
,
0
)=
0 yields a mnl =
0. The b mnl can be de-
termined by the initial condition u t (
x
,
y
,
z
,
0
)= ψ (
x
,
y
,
z
)
. Finally, we have
sin γ l z
c 1 + ϕ l sin
+
b mnl sin m
π
x
cos μ n y
b 1
u
=
W ψ (
x
,
y
,
z
,
t
)=
ω mnl t
,
a 1
m
,
n
,
l
=
1
sin γ l z
c 1 + ϕ l d x d y d z
1
ω mnl M mnl
sin m
π
x
cos μ n y
b 1
b mnl =
ψ (
x
,
y
,
z
)
,
a 1
Ω
where M mnl =
M m M n M l , M m , M n and M l are the normal squares of the three eigen-
function sets, respectively.
The solution of PDS (2.52) under the boundary conditions (2.53) follows straight-
forwardly from the solution structure theorem
=
t
u
t W ϕ +
W ψ (
x
,
y
,
z
,
t
)+
W f τ (
x
,
y
,
z
,
t
τ )
d
τ ,
0
where f τ =
f
(
x
,
y
,
z
, τ )
.
 
Search WWH ::




Custom Search