Environmental Engineering Reference
In-Depth Information
By Eq. (6.136b)
L t
0
∂Ω
t
t
(
,
,
) | ∂Ω =
τ ,
τ ,
L
u
u r
u z
W f τ d
W f τ d
W f τ d
τ
r
z
0
0
∂Ω
L W f τ ,
t
=
r W f τ ,
z W f τ
d
τ =
0
,
0
so the u
(
r
, θ ,
z
,
t
)
in Eq. (6.135) satisfies the boundary conditions of PDS (6.134).
Clearly, the u
(
r
, θ ,
z
,
t
)
in Eq. (6.135) satisfies u
(
r
, θ ,
z
,
0
)=
0. Also,
t
W f τ τ = t ,
W f τ
u t (
r
, θ ,
z
,
t
)=
d
τ +
t
0
(
, θ ,
,
)=
(
, θ ,
,
)
which shows that u t
r
z
0
0 by Eq. (6.136c). Thus the u
r
z
t
in Eq. (6.135)
also satisfies the two initial conditions of PDS (6.134).
Since for the u
(
r
, θ ,
z
,
t
)
in Eq. (6.135)
t
t
t
W f τ τ = t =
W f τ
W f τ
u t =
W f τ d
τ =
d
τ +
d
τ ,
t
t
t
0
0
0
τ = t
t
t
2 W f τ
u tt =
τ +
W f τ
t W f τ d
τ =
d
t 2
t
t
0
0
t
2 W f τ
=
d
τ +
f
(
r
, θ ,
z
,
t
) ,
t 2
0
t
t
0 Δ
= Δ
τ =
τ ,
Δ
u
W f τ d
W f τ d
0
t
t
0 Δ
=
τ =
t Δ
u
t Δ
W f τ d
W f τ d
τ
t
0
t
t
W f τ τ = t =
=
t Δ
W f τ d
τ + Δ
t Δ
W f τ d
τ ,
0
0
a substitution of Eq. (6.135) into the equation of PDS (6.134) yields
u t
τ
B 2
A 2
0 +
u tt
Δ
u
(
r
, θ ,
z
,
t
)
t Δ
u
(
r
, θ ,
z
,
t
)
1
τ
d
t
2 W f τ
0
W f τ
t +
B 2
A 2
=
Δ
W f τ
t Δ
W f τ
τ +
f
(
r
, θ ,
z
,
t
)
t 2
0
=
f
(
r
, θ ,
z
,
t
) .
Thus the u
(
r
, θ ,
z
,
t
)
in Eq. (6.135) is indeed the solution of PDS (6.134).
Search WWH ::




Custom Search