Environmental Engineering Reference
In-Depth Information
6.6.4 Green Function of the Dual-Phase-Lagging
Heat-Conduction Equation
By using Eq. (6.123), the u
(
r
, θ ,
z
,
t
)
in Eq. (6.135) reads
t
t
1
M mnk β mnk
m , n , k
e α mnk ( t τ )
u
=
W f τ (
r
, θ ,
z
,
t
τ )
d
τ =
0
0
Ω
r , θ ,
z , τ )(
θ +
θ )
r
·
f
(
cos n
θ
cos n
sin n
θ
sin n
J n (
k mn r
)
k mn r )
z )
θ d r d z d
·
J n (
Z k (
z
)
Z k (
sin
β mnk (
t
τ )
d
τ
t
r ;
θ , θ ; z
z ; t
r , θ ,
z , τ )
=
(
,
,
τ )
(
τ ,
G
r
f
d
Ω
d
(6.137)
0
Ω
where
e α mnk ( t τ )
M mnk β mnk
= m , n , k
k mn r )
z )
( θ θ )
G
J n (
k mn r
)
J n (
Z k (
z
)
Z k (
cos n
sin
β mnk (
t
τ )
(6.138)
is called the Green function of the dual-phase-lagging heat-conduction equation in
a cylindrical domain . The Green function is clearly boundary-condition dependent.
When f
(
r
, θ ,
z
,
t
)= δ (
r
r 0 ,
t
t 0 )
, the solution of PDS (6.134) reduces to
u
=
G
(
r
,
r 0 ;
θ , θ 0 ; z
,
z 0 ; t
t 0 ) ,
=(
, θ ,
)
=(
, θ
,
)
(
,
θ , θ
,
where r
r
z
, r 0
r 0
z 0
. Therefore the Green function G
r
r 0 ;
0 ; z
0
,
)
δ (
,
)
z 0 ; t
t 0
is the solution from the source term
r
r 0
t
t 0
.
Remark 1 .The boundary condition L
0 in PDS (6.114) encompasses
27 combinations. Since PDS (6.114) has nontrivial solutions for any nontrivial
(
u
,
u r
,
u z
) | ∂Ω =
ϕ
,
or f , there exist a total of seven cases C 3 +
7 of nontrivial solutions.
C 3 +
C 3 =
ψ
Therefore, PDS (6.114) actually contains 27
×
7
=
189 PDS. Their solutions can be
written in the general form
1
W ϕ (
τ 0 +
B 2 W
u
=
r
, θ ,
z
,
t
)+
) ϕ (
r
, θ ,
z
,
t
)
(
2
k
k mn + λ
t
t
+
W ψ (
r
, θ ,
z
,
t
)+
W f τ (
r
, θ ,
z
,
t
τ )
d
τ ,
(6.139)
0
where the structure of W ψ (
r
, θ ,
z
,
t
)
is available in Eq. (6.123). Since Eq. (6.123)
exhibits the structure of W ψ (
r
, θ ,
z
,
t
)
, we can write W ϕ (
r
, θ ,
z
,
t
)
and W f τ (
r
, θ ,
z
,
t
τ )
using the structure in Eq. (6.123) even for PDS with
ψ (
r
, θ ,
z
)=
0. There-
Search WWH ::




Custom Search