Environmental Engineering Reference
In-Depth Information
The solution of
u t
τ 0 +
B 2
A 2
u tt =
Δ 2 u
+
t Δ 2 u
+
f
(
x
,
y
,
t
) ,
D
× (
0
, + ) ,
(6.65)
L
(
u
,
u n ) | D =
0
,
u
(
x
,
y
,
0
)= ϕ (
x
,
y
) ,
u t (
x
,
y
,
0
)= ψ (
x
,
y
)
is
1
τ
W ϕ (
0 +
B 2 W ( λ m + λ n ) ϕ (
u
=
x
,
y
,
t
)+
x
,
y
,
t
)
(6.66)
t
t
+
W ψ (
x
,
y
,
t
)+
W f τ (
x
,
y
,
t
τ )
d
τ
(6.67)
0
Proof. By Theorem 2 in Section 6.1, we only need to prove that the solution of
u t
τ 0 +
B 2
A 2
u tt =
Δ 2 u
+
t Δ 2 u
,
D
× (
0
, + ) ,
(6.68)
L
(
u
,
u n ) | D =
0
,
u
(
x
,
y
,
0
)= ϕ (
x
,
y
) ,
u t
(
x
,
y
,
0
)=
0
is
1
W ϕ (
τ 0 +
B 2 W
u
=
x
,
y
,
t
)+
( λ m + λ n ) ϕ (
x
,
y
,
t
) .
(6.69)
t
From the given boundary conditions in PDS (6.64), we may obtain, from Table 2.1,
the complete and orthogonal set of eigenfunctions and their corresponding eigen-
values
,
(
)
,
(
) .
λ
X m
x
;
λ
Y n
y
m
n
Consider now the solution of PDS (6.64) of the form
= m , n T mn ( t ) X m ( x ) Y n ( y ) .
u
(6.70)
Substituting it into the equation in (6.64) leads to the T mn (
t
)
-equation
1
τ
B 2 T mn (
T mn (
A 2 T mn
t
)+
0 +( λ
+ λ
)
t
)+( λ
+ λ
)
(
t
)=
0
.
m
n
m
n
Search WWH ::




Custom Search